File size: 1,850 Bytes
0b9e06e
 
 
4d7a6b0
0b9e06e
 
4d7a6b0
 
b45a6ed
 
0b9e06e
 
b45a6ed
 
 
 
 
 
 
 
 
 
 
 
 
 
0b9e06e
 
 
 
 
 
 
4d7a6b0
b45a6ed
 
 
0b9e06e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f015e
0b9e06e
 
 
26f015e
0b9e06e
 
4d7a6b0
b45a6ed
0b9e06e
 
5620633
 
b45a6ed
 
 
5620633
 
0b9e06e
 
 
4d7a6b0
5620633
0b9e06e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: mit
base_model: distil-whisper/distil-small.en
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- wer
model-index:
- name: distil_whisper_en
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: generator
      type: generator
      config: default
      split: train
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.8298755186721992
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distil_whisper_en

This model is a fine-tuned version of [distil-whisper/distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Wer: 0.8299

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.0           | 19.031 | 500  | 0.0000          | 0.8299 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1