--- library_name: transformers license: mit base_model: distil-whisper/distil-small.en tags: - generated_from_trainer datasets: - generator metrics: - wer model-index: - name: distil_whisper_en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: generator type: generator config: default split: train args: default metrics: - name: Wer type: wer value: 0.8298755186721992 --- # distil_whisper_en This model is a fine-tuned version of [distil-whisper/distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Wer: 0.8299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0 | 19.031 | 500 | 0.0000 | 0.8299 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1