princeton-nlp
commited on
Commit
•
ebdb01f
1
Parent(s):
088ed5d
Update README.md
Browse files
README.md
CHANGED
@@ -12,9 +12,7 @@ SimPO (Simple Preference Optimization) is an offline preference optimization alg
|
|
12 |
|
13 |
### Model Description
|
14 |
|
15 |
-
We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on with the SimPO objective.
|
16 |
-
, a preference optimization dataset where the prompts are from [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
|
17 |
-
|
18 |
|
19 |
- **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
|
20 |
- **Model type:** Causal Language Model
|
@@ -34,8 +32,6 @@ We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it
|
|
34 |
```
|
35 |
import torch
|
36 |
from transformers import pipeline
|
37 |
-
import json
|
38 |
-
import warnings
|
39 |
|
40 |
model_id = "princeton-nlp/gemma-2-9b-it-SimPO"
|
41 |
|
@@ -45,7 +41,6 @@ generator = pipeline(
|
|
45 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
46 |
device="cuda",
|
47 |
)
|
48 |
-
generator.tokenizer.chat_template = template
|
49 |
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
|
50 |
print(outputs[0]['generated_text'])
|
51 |
```
|
@@ -62,7 +57,7 @@ We use
|
|
62 |
|
63 |
#### Speeds, Sizes, Times
|
64 |
|
65 |
-
Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on
|
66 |
|
67 |
## Evaluation
|
68 |
|
|
|
12 |
|
13 |
### Model Description
|
14 |
|
15 |
+
We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) with the SimPO objective.
|
|
|
|
|
16 |
|
17 |
- **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
|
18 |
- **Model type:** Causal Language Model
|
|
|
32 |
```
|
33 |
import torch
|
34 |
from transformers import pipeline
|
|
|
|
|
35 |
|
36 |
model_id = "princeton-nlp/gemma-2-9b-it-SimPO"
|
37 |
|
|
|
41 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
42 |
device="cuda",
|
43 |
)
|
|
|
44 |
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
|
45 |
print(outputs[0]['generated_text'])
|
46 |
```
|
|
|
57 |
|
58 |
#### Speeds, Sizes, Times
|
59 |
|
60 |
+
Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) takes around 100 mins to finish on 8xH100 GPUs.
|
61 |
|
62 |
## Evaluation
|
63 |
|