prithivida
commited on
Commit
•
6ad9ae8
1
Parent(s):
1852784
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,192 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
datasets:
|
6 |
+
- ms_marco
|
7 |
+
tags:
|
8 |
+
- splade++
|
9 |
+
- document-expansion
|
10 |
+
- sparse representation
|
11 |
+
- bag-of-words
|
12 |
+
- passage-retrieval
|
13 |
+
- knowledge-distillation
|
14 |
+
- document encoder
|
15 |
+
pretty_name: Independent Implementation of SPLADE++ Model with some efficiency tweaks for Industry setting.
|
16 |
+
library_name: transformers
|
17 |
+
pipeline_tag: fill-mask
|
18 |
---
|
19 |
+
|
20 |
+
# Independent Implementation of SPLADE++ Model (`a.k.a splade-cocondenser-ensembledistil and family`) for Industry a setting.
|
21 |
+
--------------
|
22 |
+
|
23 |
+
This work stands on the shoulders of the robust researches [Naver's From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective paper](https://arxiv.org/pdf/2205.04733.pdf) and [Google's SparseEmbed](https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/79f16d3b3b948706d191a7fe6dd02abe516f5564.pdf).
|
24 |
+
Props to both the teams for such a robust work.
|
25 |
+
|
26 |
+
|
27 |
+
## Motivation:
|
28 |
+
SPLADE models are a fine balance between retrieval effectiveness (quality) and retrieval efficiency (latency and $), with that in mind we did **very minor retrieval efficiency tweaks** to make it more suitable for a industry setting.
|
29 |
+
*(Pure MLE folks should not conflate efficiency to model inference efficiency. Our main focus is on retrieval efficiency. Hereinafter efficiency is a short hand for retrieval efficiency unless explicitly qualified otherwise. Not that inference efficiency is not important, we will address that subsequently.)*
|
30 |
+
|
31 |
+
**TL;DR of Our attempt & results**
|
32 |
+
1. FLOPS tuning:
|
33 |
+
- Seperate **seq len for doc and query** NOT single token max_len unlike Official SPLADE++.
|
34 |
+
- **Severely restricive token budget** doc(128) and query(24) NOT 256 unlike Official SPLADE++.
|
35 |
+
- Idea Inspired from **SparseEmbed** (instead of 2 models for query & doc).
|
36 |
+
2. Init Weights: **MLM adapted on MS MARCO corpus**.
|
37 |
+
3. Achieves a modest yet competitive effectiveness wrt - **MRR@10 37.22** in ID data (& OOD).
|
38 |
+
2. and a retrieval latency of - **47.27ms**. (multi-threaded)
|
39 |
+
3. On **mono-GPU** with **only 5 negatives per query**.
|
40 |
+
4. Observations: For Industry setting
|
41 |
+
- Effectiveness on custom domains needs more than just **Trading FLOPS for tiny gains**.
|
42 |
+
- The Premise "SPLADE++ are not well suited to mono-cpu retrieval" does not hold.
|
43 |
+
|
44 |
+
<img src="./ID.png" width=800/>
|
45 |
+
|
46 |
+
*Note: The paper refers to the best performing models as SPLADE++, hence for consistency we are reusing the same.*
|
47 |
+
|
48 |
+
## Why FLOPS is one of the key metrics for industry setting ?
|
49 |
+
|
50 |
+
While ONLY a empirical analysis on large sample make sense here is a spot checking - a qualitatively example to give you an idea. Our models achieve par competitive effectiveness with **~10% and ~100%, lesser tokens comparable SPLADE++ models including SoTA**.
|
51 |
+
(We will show Quantitative results in the next section.)
|
52 |
+
|
53 |
+
So, **by design "how to beat SoTA MRR?" was never our goal**, Instead "At what cost can we achieve an acceptable effectiveness i.e. MRR@10". Non-chalantly reducing lambda values (λQ,λD, see above table) will achieve a better MRR.
|
54 |
+
But Lower lambda values = Higher FLOPS = More tokens = Poorer efficiency. This is NOT desirable for a Industry setting.
|
55 |
+
|
56 |
+
**Ours**
|
57 |
+
```python
|
58 |
+
number of actual dimensions: 113
|
59 |
+
SPLADE BOW rep:
|
60 |
+
[('stress', 2.36), ('glass', 2.15), ('thermal', 2.06), ('pan', 1.83), ('glasses', 1.67), ('break', 1.47), ('crack', 1.47), ('heat', 1.45), ('warmth', 1.36), ('depression', 1.34), ('hotter', 1.23), ('hottest', 1.11), ('window', 1.11), ('hot', 1.1), ('area', 1.04), ('cause', 1.01), ('adjacent', 0.99), ('too', 0.94), ('created', 0.86), ('##pan', 0.84), ('phenomenon', 0.81), ('when', 0.78), ('temperature', 0.76), ('cracked', 0.75), ('factors', 0.74), ('windows', 0.72), ('create', 0.71), ('level', 0.7), ('formed', 0.61), ('stresses', 0.59), ('warm', 0.58), ('fracture', 0.57), ('adjoining', 0.56), ('areas', 0.56), ('nearby', 0.56), ('causes', 0.56), ('broken', 0.54), ('produced', 0.52), ('sash', 0.51), ('if', 0.51), ('breaks', 0.49), ('is', 0.49), ('effect', 0.45), ('heated', 0.44), ('process', 0.42), ('breaking', 0.42), ('one', 0.4), ('mirror', 0.39), ('factor', 0.38), ('shatter', 0.38), ('formation', 0.37), ('mathias', 0.37), ('damage', 0.36), ('cracking', 0.35), ('climate', 0.35), ('ceramic', 0.34), ('reaction', 0.34), ('steam', 0.33), ('reflection', 0.33), ('generated', 0.33), ('material', 0.32), ('burst', 0.31), ('fire', 0.31), ('neighboring', 0.3), ('explosion', 0.29), ('caused', 0.29), ('warmer', 0.29), ('because', 0.28), ('anxiety', 0.28), ('furnace', 0.28), ('tear', 0.27), ('induced', 0.27), ('fail', 0.26), ('are', 0.26), ('collapse', 0.26), ('##thermal', 0.26), ('and', 0.25), ('great', 0.25), ('get', 0.24), ('spark', 0.23), ('lens', 0.2), ('cooler', 0.19), ('determined', 0.19), ('leak', 0.19), ('disease', 0.19), ('emotion', 0.16), ('cork', 0.14), ('cooling', 0.14), ('heating', 0.13), ('governed', 0.13), ('optical', 0.12), ('surrounding', 0.12), ('warming', 0.12), ('convection', 0.11), ('regulated', 0.11), ('problem', 0.1), ('cool', 0.09), ('violence', 0.09), ('breaker', 0.09), ('image', 0.09), ('photo', 0.05), ('strike', 0.05), ('.', 0.04), ('shattering', 0.04), ('snap', 0.03), ('wilson', 0.03), ('weather', 0.02), ('eye', 0.02), ('produce', 0.01), ('crime', 0.01), ('humid', 0.0), ('impact', 0.0), ('earthquake', 0.0)]```
|
61 |
+
```
|
62 |
+
|
63 |
+
**naver/splade-cocondenser-ensembledistil** (SoTA, ~10% more tokens + FLOPS = 1.85)
|
64 |
+
```python
|
65 |
+
number of actual dimensions: 126
|
66 |
+
SPLADE BOW rep:
|
67 |
+
[('stress', 2.25), ('glass', 2.23), ('thermal', 2.18), ('glasses', 1.65), ('pan', 1.62), ('heat', 1.56), ('stressed', 1.42), ('crack', 1.31), ('break', 1.12), ('cracked', 1.1), ('hot', 0.93), ('created', 0.9), ('factors', 0.81), ('broken', 0.73), ('caused', 0.71), ('too', 0.71), ('damage', 0.69), ('if', 0.68), ('hotter', 0.65), ('governed', 0.61), ('heating', 0.59), ('temperature', 0.59), ('adjacent', 0.59), ('cause', 0.58), ('effect', 0.57), ('fracture', 0.56), ('bradford', 0.55), ('strain', 0.53), ('hammer', 0.51), ('brian', 0.48), ('error', 0.47), ('windows', 0.45), ('will', 0.45), ('reaction', 0.42), ('create', 0.42), ('windshield', 0.41), ('heated', 0.41), ('factor', 0.4), ('cracking', 0.39), ('failure', 0.38), ('mechanical', 0.38), ('when', 0.38), ('formed', 0.38), ('bolt', 0.38), ('mechanism', 0.37), ('warm', 0.37), ('areas', 0.36), ('area', 0.36), ('energy', 0.34), ('disorder', 0.33), ('barry', 0.33), ('shock', 0.32), ('determined', 0.32), ('gage', 0.32), ('sash', 0.31), ('theory', 0.31), ('level', 0.31), ('resistant', 0.31), ('brake', 0.3), ('window', 0.3), ('crash', 0.3), ('hazard', 0.29), ('##ink', 0.27), ('ceramic', 0.27), ('storm', 0.25), ('problem', 0.25), ('issue', 0.24), ('impact', 0.24), ('fridge', 0.24), ('injury', 0.23), ('ross', 0.22), ('causes', 0.22), ('affect', 0.21), ('pressure', 0.21), ('fatigue', 0.21), ('leak', 0.21), ('eye', 0.2), ('frank', 0.2), ('cool', 0.2), ('might', 0.19), ('gravity', 0.18), ('ray', 0.18), ('static', 0.18), ('collapse', 0.18), ('physics', 0.18), ('wave', 0.18), ('reflection', 0.17), ('parker', 0.17), ('strike', 0.17), ('hottest', 0.17), ('burst', 0.16), ('chance', 0.16), ('burn', 0.14), ('rubbing', 0.14), ('interference', 0.14), ('bailey', 0.13), ('vibration', 0.12), ('gilbert', 0.12), ('produced', 0.12), ('rock', 0.12), ('warmer', 0.11), ('get', 0.11), ('drink', 0.11), ('fireplace', 0.11), ('ruin', 0.1), ('brittle', 0.1), ('fragment', 0.1), ('stumble', 0.09), ('formation', 0.09), ('shatter', 0.08), ('great', 0.08), ('friction', 0.08), ('flash', 0.07), ('cracks', 0.07), ('levels', 0.07), ('smash', 0.04), ('fail', 0.04), ('fra', 0.04), ('##glass', 0.03), ('variables', 0.03), ('because', 0.02), ('knock', 0.02), ('sun', 0.02), ('crush', 0.01), ('##e', 0.01), ('anger', 0.01)]
|
68 |
+
```
|
69 |
+
|
70 |
+
**naver/splade-v2-distil** (~100% more tokens + FLOPS = 3.82)
|
71 |
+
```python
|
72 |
+
number of actual dimensions: 234
|
73 |
+
SPLADE BOW rep:
|
74 |
+
[('glass', 2.55), ('stress', 2.39), ('thermal', 2.38), ('glasses', 1.95), ('stressed', 1.87), ('crack', 1.84), ('cool', 1.78), ('heat', 1.62), ('pan', 1.6), ('break', 1.53), ('adjacent', 1.44), ('hotter', 1.43), ('strain', 1.21), ('area', 1.16), ('adjoining', 1.14), ('heated', 1.11), ('window', 1.07), ('stresses', 1.04), ('hot', 1.03), ('created', 1.03), ('create', 1.03), ('cause', 1.02), ('factors', 1.02), ('cooler', 1.01), ('broken', 1.0), ('too', 0.99), ('fracture', 0.96), ('collapse', 0.96), ('cracking', 0.95), ('great', 0.93), ('happen', 0.93), ('windows', 0.89), ('broke', 0.87), ('##e', 0.87), ('pressure', 0.84), ('hottest', 0.84), ('breaking', 0.83), ('govern', 0.79), ('shatter', 0.76), ('level', 0.75), ('heating', 0.69), ('temperature', 0.69), ('cracked', 0.69), ('panel', 0.68), ('##glass', 0.68), ('ceramic', 0.67), ('sash', 0.66), ('warm', 0.66), ('areas', 0.64), ('creating', 0.63), ('will', 0.62), ('tension', 0.61), ('cracks', 0.61), ('optical', 0.6), ('mechanism', 0.58), ('kelly', 0.58), ('determined', 0.58), ('generate', 0.58), ('causes', 0.56), ('if', 0.56), ('factor', 0.56), ('the', 0.56), ('chemical', 0.55), ('governed', 0.55), ('crystal', 0.55), ('strike', 0.55), ('microsoft', 0.54), ('creates', 0.53), ('than', 0.53), ('relation', 0.53), ('glazed', 0.52), ('compression', 0.51), ('painting', 0.51), ('governing', 0.5), ('harden', 0.49), ('solar', 0.48), ('reflection', 0.48), ('ic', 0.46), ('split', 0.45), ('mirror', 0.44), ('damage', 0.43), ('ring', 0.42), ('formation', 0.42), ('wall', 0.41), ('burst', 0.4), ('radiant', 0.4), ('determine', 0.4), ('one', 0.4), ('plastic', 0.39), ('furnace', 0.39), ('difference', 0.39), ('melt', 0.39), ('get', 0.39), ('contract', 0.38), ('forces', 0.38), ('gets', 0.38), ('produce', 0.38), ('surrounding', 0.37), ('vibration', 0.37), ('tile', 0.37), ('fail', 0.36), ('warmer', 0.36), ('rock', 0.35), ('fault', 0.35), ('roof', 0.34), ('burned', 0.34), ('physics', 0.33), ('welding', 0.33), ('why', 0.33), ('a', 0.32), ('pop', 0.32), ('and', 0.31), ('fra', 0.3), ('stat', 0.3), ('withstand', 0.3), ('sunglasses', 0.3), ('material', 0.29), ('ice', 0.29), ('generated', 0.29), ('matter', 0.29), ('frame', 0.28), ('elements', 0.28), ('then', 0.28), ('.', 0.28), ('pont', 0.28), ('blow', 0.28), ('snap', 0.27), ('metal', 0.26), ('effect', 0.26), ('reaction', 0.26), ('related', 0.25), ('aluminium', 0.25), ('neighboring', 0.25), ('weight', 0.25), ('steel', 0.25), ('bulb', 0.25), ('tear', 0.25), ('coating', 0.25), ('plumbing', 0.25), ('co', 0.25), ('microwave', 0.24), ('formed', 0.24), ('pipe', 0.23), ('drink', 0.23), ('chemistry', 0.23), ('energy', 0.22), ('reflect', 0.22), ('dynamic', 0.22), ('leak', 0.22), ('is', 0.22), ('lens', 0.21), ('frost', 0.21), ('lenses', 0.21), ('produced', 0.21), ('induced', 0.2), ('arise', 0.2), ('plate', 0.2), ('equations', 0.19), ('affect', 0.19), ('tired', 0.19), ('mirrors', 0.18), ('thickness', 0.18), ('bending', 0.18), ('cabinet', 0.17), ('apart', 0.17), ('##thermal', 0.17), ('gas', 0.17), ('equation', 0.17), ('relationship', 0.17), ('composition', 0.17), ('engineering', 0.17), ('block', 0.16), ('breaks', 0.16), ('when', 0.16), ('definition', 0.16), ('collapsed', 0.16), ('generation', 0.16), (',', 0.16), ('philips', 0.16), ('later', 0.15), ('wood', 0.15), ('neighbouring', 0.15), ('structural', 0.14), ('regulate', 0.14), ('neighbors', 0.13), ('lighting', 0.13), ('happens', 0.13), ('more', 0.13), ('property', 0.13), ('cooling', 0.12), ('shattering', 0.12), ('melting', 0.12), ('how', 0.11), ('cloud', 0.11), ('barriers', 0.11), ('lam', 0.11), ('conditions', 0.11), ('rule', 0.1), ('insulation', 0.1), ('bathroom', 0.09), ('convection', 0.09), ('cavity', 0.09), ('source', 0.08), ('properties', 0.08), ('bend', 0.08), ('bottles', 0.08), ('ceramics', 0.07), ('temper', 0.07), ('tense', 0.07), ('keller', 0.07), ('breakdown', 0.07), ('concrete', 0.07), ('simon', 0.07), ('solids', 0.06), ('windshield', 0.05), ('eye', 0.05), ('sunlight', 0.05), ('brittle', 0.03), ('caused', 0.03), ('suns', 0.03), ('floor', 0.02), ('components', 0.02), ('photo', 0.02), ('change', 0.02), ('sun', 0.01), ('crystals', 0.01), ('problem', 0.01), ('##proof', 0.01), ('parameters', 0.01), ('gases', 0.0), ('prism', 0.0), ('doing', 0.0), ('lattice', 0.0), ('ground', 0.0)]
|
75 |
+
```
|
76 |
+
|
77 |
+
- *Note 1: This specific passage was used as an example for [ease of comparison](https://github.com/naver/splade/blob/main/inference_splade.ipynb)*
|
78 |
+
|
79 |
+
## How does it translate into Empirical metrics?
|
80 |
+
|
81 |
+
Our models are token sparse and yet effective. It translates to faster retrieval (User experience) and smaller index size ($). Mean retrieval time on the standard MS-MARCO small dev set and Scaled total FLOPS loss are the respective metrics are below.
|
82 |
+
This is why Google's SparseEmbed is interesting as they also achieve SPLADE quality retrieval effectiveness with much lower FLOPs. Compared ColBERT, SPLADE and SparseEmbed match query and
|
83 |
+
document terms with a linear complexity as ColBERT’s late interaction i.e. all query-document term pairs takes a quadratic complexity. The Challenge with SparseEmbed is it uses a hyperparameter called **Top-k to restrict number of tokens used to learn contextual dense representations.** Say 64 and 256 tokens for query and passage encoding.
|
84 |
+
But it is unclear how well these hyperparameters are transferable to other domains or languages.
|
85 |
+
|
86 |
+
<img src="./Metrics.png" width=800/>
|
87 |
+
|
88 |
+
**Note: Why Anserini not PISA?** *Anserini is a production ready lucene based library. Common industry search deployments use Solr or elastic which are lucene based, hence the performance can be comparable. PISA latency is irrelevant for industry as it is a a research only system.*
|
89 |
+
The full [anserini evaluation log](https://huggingface.co/DOST/SPLADEplusplus_EN/blob/main/anserini_run.log) with encoding, indexing and querying details are here.
|
90 |
+
|
91 |
+
- **BEIR ZST OOD performance**: Will be added to the end of page.
|
92 |
+
|
93 |
+
**Our model is different in few more aspects**
|
94 |
+
- **Cocondenser Weights**: Unlike the best Official SPLADE++ or SparseEmbed we do NOT initialse weights from Luyu/co-condenser* models. Yet we achieve CoCondenser SPLADE level performance. More on this later.
|
95 |
+
- **Same size models:** Official SPLADE++, SparseEmbed and Ours all finetune on the same size based model. Size of `bert-base-uncased`.
|
96 |
+
|
97 |
+
|
98 |
+
## Roadmap and future directions for Industry Suitability.
|
99 |
+
|
100 |
+
- **Custom/Domain Finetuning**: OOD Zeroshot performance of SPLADE models is great but unimportant in the industry setting as we need the ability to finetune on custom datasets or domains. Finetuning SPLADE on a new dataset is not cheap and needs labelling of queries and passages.
|
101 |
+
So we will continue to see how we can enable economically finetuning our recipe on custom datasets without expensive labelling.
|
102 |
+
- **Multilingual SPLADE**: Training cost of SPLADE i.e (GPU budget) directly proportional to Vocab size of the base model, So Mulitlingual SPLADE either using mbert or XLMR can be expensive as they have
|
103 |
+
120K and 250K vocab as opposed to 30K as in bert-base-uncased. We will continue to research to see how best we can extend our recipe to the multilingual world.
|
104 |
+
|
105 |
+
|
106 |
+
## Usage
|
107 |
+
|
108 |
+
To enable a light weight inference solution without heavy **No Torch dependency** we will also release a library - **SPLADERunner**
|
109 |
+
Ofcourse if it doesnt matter you could always use these models Huggingface transformers library.
|
110 |
+
|
111 |
+
|
112 |
+
# How to use:
|
113 |
+
|
114 |
+
## With SPLADERunner Library
|
115 |
+
|
116 |
+
[SPLADERunner Library](https://github.com/PrithivirajDamodaran/SPLADERunner)
|
117 |
+
|
118 |
+
```python
|
119 |
+
pip install spladerunner
|
120 |
+
|
121 |
+
#One-time init
|
122 |
+
from spladerunner import Expander
|
123 |
+
# Default model is the document expander.
|
124 |
+
exapander = Expander()
|
125 |
+
|
126 |
+
#Sample Document expansion
|
127 |
+
sparse_rep = expander.expand(
|
128 |
+
["The Manhattan Project and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic energy continues to have an impact on history and science."])
|
129 |
+
```
|
130 |
+
|
131 |
+
|
132 |
+
## With HuggingFace
|
133 |
+
|
134 |
+
```python
|
135 |
+
import torch
|
136 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
137 |
+
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained('DOST/SPLADEplusplus_EN')
|
139 |
+
model = AutoModelForMaskedLM.from_pretrained('DOST/SPLADEplusplus_EN')
|
140 |
+
|
141 |
+
sentence = """The Manhattan Project and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic energy continues to have an impact on history and science."""
|
142 |
+
|
143 |
+
inputs = tokenizer(sentence, return_tensors='pt')
|
144 |
+
input_ids = inputs['input_ids']
|
145 |
+
attention_mask = inputs['attention_mask']
|
146 |
+
|
147 |
+
outputs = model(**inputs)
|
148 |
+
print(outputs.logits.shape)
|
149 |
+
|
150 |
+
logits, attention_mask = outputs.logits, attention_mask
|
151 |
+
relu_log = torch.log(1 + torch.relu(logits))
|
152 |
+
weighted_log = relu_log * attention_mask.unsqueeze(-1)
|
153 |
+
max_val, _ = torch.max(weighted_log, dim=1)
|
154 |
+
vector = max_val.squeeze()
|
155 |
+
|
156 |
+
cols = vector.nonzero().squeeze().cpu().tolist()
|
157 |
+
weights = vector[cols].cpu().tolist()
|
158 |
+
|
159 |
+
# Map indices to tokens and create a dictionary
|
160 |
+
idx2token = {idx: token for token, idx in tokenizer.get_vocab().items()}
|
161 |
+
token_weight_dict = {
|
162 |
+
idx2token[idx]: round(weight, 2) for idx, weight in zip(cols, weights)
|
163 |
+
}
|
164 |
+
|
165 |
+
# Sort the dictionary by weights in descending order
|
166 |
+
sorted_token_weight_dict = {k: v for k, v in sorted(token_weight_dict.items(), key=lambda item: item[1], reverse=True) if v > 0}
|
167 |
+
print(sorted_token_weight_dict)
|
168 |
+
|
169 |
+
```
|
170 |
+
|
171 |
+
## BEIR Zeroshot ODD performance:
|
172 |
+
T.B.D
|
173 |
+
|
174 |
+
|
175 |
+
## Training details:
|
176 |
+
T.B.D
|
177 |
+
|
178 |
+
## Acknowledgements
|
179 |
+
|
180 |
+
- Thanks to Nils Reimers for all the hard negatives and chats.
|
181 |
+
- Thanks to authors of the Anserini library.
|
182 |
+
|
183 |
+
|
184 |
+
## Limitations and bias
|
185 |
+
|
186 |
+
All limitations and biases of the BERT model applies to finetuning effort.
|
187 |
+
|
188 |
+
## Citation
|
189 |
+
|
190 |
+
Please cite if you use our models or libraries. Citation info below.
|
191 |
+
|
192 |
+
T.B.D
|