--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-IAM results: [] --- # distilbert-base-uncased-finetuned-IAM This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9616 - Accuracy: 0.5103 - F1: 0.4983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5782 | 1.0 | 15 | 1.4989 | 0.3448 | 0.2657 | | 1.5021 | 2.0 | 30 | 1.4732 | 0.3655 | 0.2645 | | 1.4674 | 3.0 | 45 | 1.4384 | 0.3448 | 0.2525 | | 1.4277 | 4.0 | 60 | 1.4140 | 0.3517 | 0.2751 | | 1.4341 | 5.0 | 75 | 1.3905 | 0.3379 | 0.2546 | | 1.3698 | 6.0 | 90 | 1.3697 | 0.3724 | 0.2936 | | 1.4233 | 7.0 | 105 | 1.3196 | 0.3862 | 0.3073 | | 1.3112 | 8.0 | 120 | 1.3048 | 0.4552 | 0.3958 | | 1.372 | 9.0 | 135 | 1.2548 | 0.4138 | 0.3385 | | 1.3284 | 10.0 | 150 | 1.2020 | 0.4759 | 0.4287 | | 1.2412 | 11.0 | 165 | 1.1672 | 0.4966 | 0.4594 | | 1.2508 | 12.0 | 180 | 1.1453 | 0.4897 | 0.4740 | | 1.1843 | 13.0 | 195 | 1.1172 | 0.4966 | 0.4784 | | 1.1694 | 14.0 | 210 | 1.1006 | 0.4966 | 0.4785 | | 1.1438 | 15.0 | 225 | 1.0763 | 0.5034 | 0.4851 | | 1.1066 | 16.0 | 240 | 1.0603 | 0.5034 | 0.4815 | | 1.1357 | 17.0 | 255 | 1.0435 | 0.5034 | 0.4821 | | 1.0352 | 18.0 | 270 | 1.0358 | 0.5034 | 0.4803 | | 1.1355 | 19.0 | 285 | 1.0183 | 0.5103 | 0.4941 | | 1.063 | 20.0 | 300 | 1.0063 | 0.5103 | 0.4957 | | 1.0329 | 21.0 | 315 | 0.9960 | 0.5103 | 0.4989 | | 1.063 | 22.0 | 330 | 0.9867 | 0.5103 | 0.4989 | | 1.0289 | 23.0 | 345 | 0.9821 | 0.5103 | 0.4980 | | 1.0624 | 24.0 | 360 | 0.9816 | 0.5103 | 0.4942 | | 1.0404 | 25.0 | 375 | 0.9723 | 0.5103 | 0.4939 | | 0.9791 | 26.0 | 390 | 0.9693 | 0.5103 | 0.4985 | | 1.0365 | 27.0 | 405 | 0.9663 | 0.5103 | 0.4980 | | 1.0129 | 28.0 | 420 | 0.9637 | 0.5103 | 0.5002 | | 0.9844 | 29.0 | 435 | 0.9617 | 0.5103 | 0.4997 | | 1.0049 | 30.0 | 450 | 0.9616 | 0.5103 | 0.4983 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1 - Datasets 2.6.1 - Tokenizers 0.11.0