--- license: apache-2.0 language: - ca - es - en tags: - RAG pipeline_tag: text-generation --- # FLOR-6.3B Model optimized for Retrieval Augmented Generation ## Table of Contents
Click to expand - [Model description](#model-description) - [Intended uses and limitations](#intended-uses-and-limitations) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Evaluation](#evaluation) - [Additional information](#additional-information)
## Model description **FlorRAG** is a 6.3B-parameter transformer-based causal language model for Catalan, Spanish, and English, trained on a customized QA dataset from various sources especifically to be used in RAG (Retrieval-Aumented Generation) Applications. The dataset used to fine tune the model is: [projecte-aina/RAG_Multilingual](https://huggingface.co/datasets/projecte-aina/RAG_Multilingual) ## Intended uses and limitations The **FlorRAG** model is ready-to-use for RAG applications optimized for Catalan, English and Spanish languages. It can perform text-generation in the context of RAG applications. ## How to use ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="projecte-aina/FlorRAG") instruction = "Quants habitants té Mataró?" context = "Mataró és una ciutat de Catalunya, capital de la comarca del Maresme. Situada al litoral mediterrani, a uns 30 km al nord-est de Barcelona, ha estat tradicionalment un centre administratiu de rellevància territorial i un pol de dinamisme econòmic. Compta amb prop de 130.000 habitants, essent actualment la vuitena població del Principat i la tretzena dels Països Catalans. " # We need to format the prompt and context using ### and \n def givePrediction(instruction, context, max_new_tokens=50, repetition_penalty=1.2, top_k=50, top_p=0.95, do_sample=True, temperature=0.5): text = f"### Instruction\n{{instruction}}\n### Context\n{{context}}\n### Answer\n" response = pipe(text.format(instruction=instruction, context=context),temperature=temperature,repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens,top_k=top_k, top_p=top_p, do_sample=do_sample)[0]["generated_text"] answer = response.split("###")[-1][8:-1] return answer answer = givePrediction(instruction, context) print(answer) 'Mataró té una població de 130.000 habitants. Aquesta ciutat catalana, situada al litoral mediterrani, a uns 30 km al nord-est de Barcelona, ha estat històricament un important centre administratiu i un important pol de dinamisme econòmic.' ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Instruction Data The training corpus is composed of 56.406 RAG instruction following examples, created from extractive QA instances that were used as 'kernels of truth' to prompt a Mixture of expert model to generate more human-like and complete answers, based on a context. See Data Card at [projecte-aina/RAG_Multilingual](https://huggingface.co/datasets/projecte-aina/RAG_Multilingual). ## Additional information ### Author The Language Technologies Unit from Barcelona Supercomputing Center. ### Contact For further information, please send an email to . ### Copyright Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center. ### License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work/research has been promoted and financed by the Government of Catalonia through the [Aina project](https://projecteaina.cat/). ### Disclaimer
Click to expand The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. Be aware that the model may have biases and/or any other undesirable distortions. When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the model (Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties.