First model version (wiki-gl LM)
Browse files- README.md +64 -0
- added_tokens.json +1 -0
- alphabet.json +1 -0
- config.json +76 -0
- flax_model.msgpack +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +0 -0
- language_model/wiki-gl.arpa.bin +3 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
- wav2vec_gl_wer_cv.py +123 -0
- wav2vec_gl_wer_slr77.py +118 -0
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
language: gl
|
4 |
+
datasets:
|
5 |
+
- OpenSLR 77
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
- cer
|
9 |
+
tags:
|
10 |
+
- audio
|
11 |
+
- automatic-speech-recognition
|
12 |
+
- gl
|
13 |
+
license:
|
14 |
+
model-index:
|
15 |
+
- name: Wav2Vec2-Large-XLSR-53-Galician-With-LM
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Automatic Speech Recognition
|
19 |
+
type: automatic-speech-recognition
|
20 |
+
dataset:
|
21 |
+
name: OpenSLR
|
22 |
+
type: openslr
|
23 |
+
args: gl
|
24 |
+
metrics:
|
25 |
+
- name: Test WER
|
26 |
+
type: wer
|
27 |
+
value: 9.10
|
28 |
+
- name: Test CER
|
29 |
+
type: cer
|
30 |
+
value: 3.94
|
31 |
+
- name: Test WER (+LM)
|
32 |
+
type: wer
|
33 |
+
value: 6.86
|
34 |
+
- name: Test CER (+LM)
|
35 |
+
type: cer
|
36 |
+
value: 2.20
|
37 |
+
- task:
|
38 |
+
name: Automatic Speech Recognition
|
39 |
+
type: automatic-speech-recognition
|
40 |
+
dataset:
|
41 |
+
name: Common Voice 7.0
|
42 |
+
type: mozilla-foundation/common_voice_7_0
|
43 |
+
args: gl
|
44 |
+
metrics:
|
45 |
+
- name: Test WER
|
46 |
+
type: wer
|
47 |
+
value: 22.12
|
48 |
+
- name: Test CER
|
49 |
+
type: cer
|
50 |
+
value: 5.09
|
51 |
+
- name: Test WER (+LM)
|
52 |
+
type: wer
|
53 |
+
value: 15.20
|
54 |
+
- name: Test CER (+LM)
|
55 |
+
type: cer
|
56 |
+
value: 3.87
|
57 |
+
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## Wav2Vec2-Large-XLSR-53-Galician-With-LM
|
62 |
+
|
63 |
+
This is copy of the model [diego-fustes/wav2vec2-large-xlsr-gl](https://huggingface.co/diego-fustes/wav2vec2-large-xlsr-gl) with an integrated language model.
|
64 |
+
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": ["g", "m", "n", "y", "x", "s", "e", "\u00e1", " ", "\u00f3", "w", "\u00ed", "i", "\u00f1", "q", "c", "j", "h", "p", "l", "u", "d", "\u00e9", "z", "o", "\u00fa", "r", "b", "f", "k", "v", "t", "a", "\u2047", ""], "is_bpe": false}
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": false,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 34,
|
74 |
+
"transformers_version": "4.4.0",
|
75 |
+
"vocab_size": 35
|
76 |
+
}
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aac96ca5e6a849b3f26720862aa09b4afe1512adf00e44e5e8a8a99de1e4147
|
3 |
+
size 1261913772
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
language_model/wiki-gl.arpa.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc855b7e4fd8f2cc980fed3baddeb2545b32e6363b2edf5fe4c6a23c1e878b71
|
3 |
+
size 353924525
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e56c670e29cbd696e26a5006d4c6126a6a08ca82fec4fc226ad47b2cf650623e
|
3 |
+
size 1262077335
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": null, "eos_token": null, "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": null, "eos_token": null, "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"g": 0, "m": 1, "n": 2, "y": 3, "x": 4, "s": 5, "e": 6, "á": 7, "ó": 9, "w": 10, "í": 11, "i": 12, "ñ": 13, "q": 14, "c": 15, "j": 16, "h": 17, "p": 18, "l": 19, "u": 20, "d": 21, "é": 22, "z": 23, "o": 24, "ú": 25, "r": 26, "b": 27, "f": 28, "k": 29, "v": 30, "t": 31, "a": 32, "|": 8, "[UNK]": 33, "[PAD]": 34}
|
wav2vec_gl_wer_cv.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from datasets import load_dataset, load_metric, Audio
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2ForCTC, AutoModelForCTC, Wav2Vec2ProcessorWithLM, Wav2Vec2CTCTokenizer
|
5 |
+
import numpy
|
6 |
+
import re
|
7 |
+
import sys
|
8 |
+
import random
|
9 |
+
|
10 |
+
|
11 |
+
# decide if lm should be used for decoding or not via command line
|
12 |
+
do_lm = bool(int(sys.argv[1]))
|
13 |
+
# set the number of random examples to be shown via command line
|
14 |
+
n_elements = int(sys.argv[2])
|
15 |
+
#eval_size = int(sys.argv[3])
|
16 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
17 |
+
print("Decoding with language model\n") if do_lm else print("Decoding without language model\n")
|
18 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
19 |
+
|
20 |
+
# Empty cache
|
21 |
+
torch.cuda.empty_cache()
|
22 |
+
|
23 |
+
# set devide
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
|
26 |
+
# load dataset
|
27 |
+
common_voice_test = load_dataset("mozilla-foundation/common_voice_7_0", "gl", split="test")
|
28 |
+
#common_voice_test = load_dataset("mozilla-foundation/common_voice_7_0", "gl", split="test[:1%]")
|
29 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
30 |
+
print("Common Voice test dataset:\n")
|
31 |
+
print(common_voice_test)
|
32 |
+
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
33 |
+
print("Number of elements in Common Voice test dataset:", common_voice_test.num_rows, "\n")
|
34 |
+
|
35 |
+
# load metric
|
36 |
+
# the predominant metric in ASR is the word error rate (WER)
|
37 |
+
wer = load_metric("wer")
|
38 |
+
cer = load_metric("cer")
|
39 |
+
|
40 |
+
# Chars to be removed
|
41 |
+
chars_to_remove_regex = '[^A-Za-záéíóúñüÁÉÍÓÚÑÜ\- ]'
|
42 |
+
#chars_to_remove_regex = '[\,\¿\?\.\¡\!\;\:\"\n\t()\{\}\[\]]'
|
43 |
+
|
44 |
+
# load model and processor
|
45 |
+
model_path = "./"
|
46 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_path, eos_token=None, bos_token=None) if do_lm else Wav2Vec2Processor.from_pretrained(model_path)
|
47 |
+
model = AutoModelForCTC.from_pretrained(model_path).to(device)
|
48 |
+
|
49 |
+
# Remove special characters and lowcase normalization
|
50 |
+
def remove_special_characters(batch):
|
51 |
+
batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower()
|
52 |
+
return batch
|
53 |
+
|
54 |
+
# Preprocessing the dataset
|
55 |
+
def prepare_dataset(batch):
|
56 |
+
# batched output is "un-batched"
|
57 |
+
audio = batch["audio"]
|
58 |
+
batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
|
59 |
+
batch["input_length"] = len(batch["input_values"])
|
60 |
+
|
61 |
+
with processor.as_target_processor():
|
62 |
+
batch["labels"] = processor(batch["sentence"]).input_ids
|
63 |
+
return batch
|
64 |
+
|
65 |
+
# Evaluation of the model
|
66 |
+
def evaluate(batch):
|
67 |
+
inputs = processor(batch["input_values"], sampling_rate=16_000, return_tensors="pt", padding=True).to(device)
|
68 |
+
with torch.no_grad():
|
69 |
+
#logits = model(inputs.input_values.to(device), attention_mask=inputs.attention_mask.to(device)).logits
|
70 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
71 |
+
|
72 |
+
if do_lm:
|
73 |
+
# batch["pred_strings"] = processor.batch_decode(logits.detach().numpy()).text
|
74 |
+
batch["pred_strings"] = processor.batch_decode(logits.cpu().numpy()).text
|
75 |
+
else:
|
76 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
77 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
78 |
+
|
79 |
+
return batch
|
80 |
+
|
81 |
+
# Show N random elements of the dataset
|
82 |
+
def show_random_elements(dataset, num_examples):
|
83 |
+
assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
|
84 |
+
picks = []
|
85 |
+
for _ in range(num_examples):
|
86 |
+
pick = random.randint(0, len(dataset)-1)
|
87 |
+
while pick in picks:
|
88 |
+
pick = random.randint(0, len(dataset)-1)
|
89 |
+
picks.append(pick)
|
90 |
+
|
91 |
+
# Print headings
|
92 |
+
print(f"\n{'Id':<4}{'File':<14}{'P':<3}{'N':<3}{'Sentence':<95}{'Prediction':<95}\n")
|
93 |
+
# Pring data
|
94 |
+
for i in range(0,num_examples):
|
95 |
+
row = picks[i]
|
96 |
+
path = dataset[row]["path"][-12:]
|
97 |
+
up_votes = dataset[row]["up_votes"]
|
98 |
+
down_votes = dataset[row]["down_votes"]
|
99 |
+
reference = dataset[row]["sentence"]
|
100 |
+
prediction = dataset[row]["pred_strings"]
|
101 |
+
print(f"{i:<4}{path:<14}{up_votes:<3}{down_votes:<3}{reference:<95}{prediction:<95}")
|
102 |
+
|
103 |
+
# Remove special characters and loowcase normalization
|
104 |
+
test_dataset = common_voice_test.map(remove_special_characters)
|
105 |
+
|
106 |
+
# resampling to 16KHz
|
107 |
+
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
108 |
+
|
109 |
+
# Prepare dataset
|
110 |
+
test_dataset = test_dataset.map(prepare_dataset)
|
111 |
+
|
112 |
+
# Evaluate dataset
|
113 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
114 |
+
|
115 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
116 |
+
print(f"Showing {n_elements} random elementes:\n")
|
117 |
+
show_random_elements(result, n_elements)
|
118 |
+
|
119 |
+
|
120 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
|
121 |
+
print("WER: {:2f}".format(100 * wer.compute(references=result["sentence"], predictions=result["pred_strings"])))
|
122 |
+
print("CER: {:2f}".format(100 * cer.compute(references=result["sentence"], predictions=result["pred_strings"])))
|
123 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
|
wav2vec_gl_wer_slr77.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
from datasets import load_dataset, load_metric, Audio
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2ForCTC, AutoModelForCTC, Wav2Vec2ProcessorWithLM, Wav2Vec2CTCTokenizer
|
5 |
+
import numpy
|
6 |
+
import re
|
7 |
+
import sys
|
8 |
+
import random
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
# decide if lm should be used for decoding or not via command line
|
12 |
+
do_lm = bool(int(sys.argv[1]))
|
13 |
+
# set the number of random examples to be shown via command line
|
14 |
+
n_elements = int(sys.argv[2])
|
15 |
+
#eval_size = int(sys.argv[2])
|
16 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
17 |
+
print("Decoding with language model\n") if do_lm else print("Decoding without language model\n")
|
18 |
+
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
19 |
+
|
20 |
+
# Empty cache
|
21 |
+
torch.cuda.empty_cache()
|
22 |
+
|
23 |
+
# set devide
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
|
26 |
+
# load dataset
|
27 |
+
#test_dataset = load_dataset("openslr", "SLR77", split="train[:1%]")
|
28 |
+
slr77_test = load_dataset("json", data_files='../xlsr-fine-tuning-gl/elra_test_manifest2.json')
|
29 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
30 |
+
print("SLR77 test:\n")
|
31 |
+
print(slr77_test)
|
32 |
+
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
33 |
+
print("Number of elements in SLR77 test dataset:", slr77_test["train"].num_rows, "\n")
|
34 |
+
|
35 |
+
# load metric
|
36 |
+
# the predominant metric in ASR is the word error rate (WER)
|
37 |
+
wer = load_metric("wer")
|
38 |
+
cer = load_metric("cer")
|
39 |
+
|
40 |
+
# Chars to be removed
|
41 |
+
chars_to_remove_regex = '[^A-Za-záéíóúñüÁÉÍÓÚÑÜ\- ]'
|
42 |
+
#chars_to_remove_regex = '[\,\¿\?\.\¡\!\;\:\"\n\t()\{\}\[\]]'
|
43 |
+
|
44 |
+
# load model and processor
|
45 |
+
model_path = "./"
|
46 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_path, eos_token=None, bos_token=None) if do_lm else Wav2Vec2Processor.from_pretrained(model_path)
|
47 |
+
model = AutoModelForCTC.from_pretrained(model_path).to(device)
|
48 |
+
|
49 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
50 |
+
|
51 |
+
# Remove special characters and loowcase normalization
|
52 |
+
def remove_special_characters(batch):
|
53 |
+
batch["text"] = re.sub(chars_to_remove_regex, '', batch["text"]).lower()
|
54 |
+
return batch
|
55 |
+
|
56 |
+
# Preprocessing the datasets.
|
57 |
+
# We need to read the audio files as arrays
|
58 |
+
def prepare_dataset(batch):
|
59 |
+
# batched output is "un-batched"
|
60 |
+
speech_array, sampling_rate = torchaudio.load(batch["audio_filepath"])
|
61 |
+
# resampling to 16KHz
|
62 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
63 |
+
return batch
|
64 |
+
|
65 |
+
# Evaluation of the model.
|
66 |
+
def evaluate(batch):
|
67 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True).to(device)
|
68 |
+
with torch.no_grad():
|
69 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
70 |
+
|
71 |
+
if do_lm:
|
72 |
+
# batch["pred_strings"] = processor.batch_decode(logits.detach().numpy())
|
73 |
+
batch["pred_strings"] = processor.batch_decode(logits.cpu().numpy()).text
|
74 |
+
else:
|
75 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
76 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
77 |
+
|
78 |
+
return batch
|
79 |
+
|
80 |
+
# Show N random elements of the dataset
|
81 |
+
def show_random_elements(dataset, num_examples):
|
82 |
+
assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
|
83 |
+
picks = []
|
84 |
+
for _ in range(num_examples):
|
85 |
+
pick = random.randint(0, len(dataset)-1)
|
86 |
+
while pick in picks:
|
87 |
+
pick = random.randint(0, len(dataset)-1)
|
88 |
+
picks.append(pick)
|
89 |
+
#picks = [74, 77, 66, 682, 556, 603, 394, 420, 384, 789, 735, 696, 6, 294, 497, 421]
|
90 |
+
|
91 |
+
# Print headings
|
92 |
+
print(f"\n{'Row':<4}{'File':<28}{'Sentence':<105}{'Prediction':<105}\n")
|
93 |
+
# Pring data
|
94 |
+
for i in range(0,num_examples):
|
95 |
+
row = picks[i]
|
96 |
+
path = dataset[row]["audio_filepath"][-25:]
|
97 |
+
reference = dataset[row]["text"]
|
98 |
+
prediction = dataset[row]["pred_strings"]
|
99 |
+
print(f"{row:<4}{path:<28}{reference:<105}{prediction:<105}")
|
100 |
+
|
101 |
+
|
102 |
+
# Remove special characters and loowcase normalization
|
103 |
+
test_dataset = slr77_test.map(remove_special_characters)
|
104 |
+
|
105 |
+
# Prepare dataset
|
106 |
+
test_dataset = test_dataset.map(prepare_dataset)
|
107 |
+
|
108 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
109 |
+
|
110 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
|
111 |
+
print(f"Showing {n_elements} random elementes:\n")
|
112 |
+
show_random_elements(result["train"], n_elements)
|
113 |
+
|
114 |
+
|
115 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
|
116 |
+
print("WER: {:2f}".format(100 * wer.compute(references=result["train"]["text"], predictions=result["train"]["pred_strings"])))
|
117 |
+
print("CER: {:2f}".format(100 * cer.compute(references=result["train"]["text"], predictions=result["train"]["pred_strings"])))
|
118 |
+
print("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
|