pseudo2010 commited on
Commit
0ab4ddd
1 Parent(s): e6168ea

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a098e75e258bac06873091ddd448214b72fa1d2350a7e6b66c61920f1a29e5c8
3
+ size 124148
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2cf9a33ac0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f2cf9a1ecc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699400163407603711,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHTmTP/aoU79DDR4+9eRsv5MIMb++DR4+mA2fvj3sEL++DR4+fB6Ov/UtQT+tCx4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABe01v7C+dL+SQIq/bYMVPhOp2T+hzPg+ASMVP+6rk791PPM/l24rPeGTyT3iY6a+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABXlTy/mVYMv7Sk6T7mohG/myWuvxAXpT9Skqc/HTmTP/aoU79DDR4+K8wwvbh6u7xSGD+8h06ZPFcNoD3c3JA9aCbkvH1O3rwJia07mhBnv+qSxL4/tn0/Hj5IP3AAgz96/OO/XoFdv/XkbL+TCDG/vg0ePjkTMb2UMLu8Tvk8vJHhmjyiNp89vi6RPY221by81NW8+YWtO9RW0b5TQJ6+aQ9svl68Ej4fB8E/MO3dv3DXZb+YDZ++PewQv74NHj45EzG9lDC7vPaQPLyR4Zo8ojafPb4ukT2NttW8vNTVvAiGrTtMqQ++m0ouQCtGPL8BRZY9ynKyPTaLQD2+1GW/fB6Ov/UtQT+tCx4+uRMxvYRMurwg2Ua81TibPIYPnz2+LpE9jbbVvLzU1by6z6k7lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 1.1501805 -0.8267969 0.15434746]\n [-0.9253686 -0.6915371 0.1543493 ]\n [-0.3106506 -0.5661047 0.1543493 ]\n [-1.1103053 0.7546075 0.15434141]]",
34
+ "desired_goal": "[[-0.7106479 -0.95603466 -1.0800955 ]\n [ 0.14600916 1.7004722 0.4859362 ]\n [ 0.58256537 -1.1536844 1.9002825 ]\n [ 0.04185351 0.09842659 -0.3249808 ]]",
35
+ "observation": "[[-0.73665375 -0.5481964 0.4563347 -0.5688919 -1.3605226 1.2897663\n 1.3091528 1.1501805 -0.8267969 0.15434746 -0.04316346 -0.02288567\n -0.01166351 0.0187142 0.07815044 0.07073376 -0.02785034 -0.02713704\n 0.00529588]\n [-0.90259707 -0.38393337 0.9910621 0.78219783 1.0234509 -1.7811425\n -0.86525524 -0.9253686 -0.6915371 0.1543493 -0.04323122 -0.02285031\n -0.01153405 0.01890639 0.07774092 0.07088993 -0.02608802 -0.02610242\n 0.00529551]\n [-0.40886557 -0.3090845 -0.23052754 0.14329669 1.5080298 -1.7338009\n -0.89781857 -0.3106506 -0.5661047 0.1543493 -0.04323122 -0.02285031\n -0.01150917 0.01890639 0.07774092 0.07088993 -0.02608802 -0.02610242\n 0.00529552]\n [-0.14029425 2.7233036 -0.7354457 0.0733738 0.08713301 0.04700776\n -0.89777744 -1.1103053 0.7546075 0.15434141 -0.0432317 -0.02274156\n -0.01213673 0.018948 0.07766633 0.07088993 -0.02608802 -0.02610242\n 0.00518223]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApWrqvf1ghj0K16M84DgGvgNviz0K16M8n06IOrlsLL0K16M8fCNtPfIaB70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAt6WUvRgogj0K16M8D05dPSjewL1uKdI9Rg4HvlkE4T0pQvs9hDUKvv5VDz0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApWrqvf1ghj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOA4Br4Db4s9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACfTog6uWwsvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAfCNtPfIaB70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.11446122 0.06561468 0.02 ]\n [-0.13107634 0.06808283 0.02 ]\n [ 0.00103994 -0.04209587 0.02 ]\n [ 0.05789517 -0.03298468 0.02 ]]",
45
+ "desired_goal": "[[-0.0725817 0.06355304 0.02 ]\n [ 0.05402952 -0.09417373 0.10261808]\n [-0.13189039 0.10987157 0.12268478]\n [-0.13496977 0.03499412 0.02 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1446122e-01\n 6.5614678e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3107634e-01\n 6.8082832e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0399407e-03\n -4.2095874e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.7895169e-02\n -3.2984681e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cq4KV32VVxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4Jkpqh11dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4R5/Tb35dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4kEG7jDLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4tEytV7ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4q1K5CnhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4zEoOQQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4/ZkbxVidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq4/ysKb8WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5A/YSQHSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4/DEvTPTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5HUqx1PndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5T++23KCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5VC2c8T0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5TfReC04dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5bzmwJPZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5oEzO5avdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5pgo5PuYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5nmlqJuVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5v2+wkgPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq58fSH/LldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq59gOrhitdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq57i1AqusdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6DwLux8ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6Puo5xR3dX2UKGgGR8BFAAAAAAAAaAdLK2gIR0Cq6L1NQCSzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6QrbpNbkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6WnZkCmudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6ijBl+VkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6d+zUqhEdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq6edr433pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6i4kVvdedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6pFH8TBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq61QXhwVCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6xK20AtGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq61pEYwZgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq68CQtBfKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7IrpA2Q5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7EvalDWtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7JIVuaWpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7PPZyuIRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7cO9vjwQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7ZJ+UhV3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7dl8G9pRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7jsXizcAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7vzxoZhsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7sHuRcNZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7wgXl8w6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq72uxB3RpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8Ds3AEdOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8AJnYg7pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8EkBKcurdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8KzMRpUQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8XEY4yXVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8Ti+cpb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8X8PFvQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8ehwEQoTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8qmwqy4XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8m+8wpOOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8rZB1LamdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8xfBFd9ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq89YPwuuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq86BGhEjPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8+c4o7V8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9Efm1YyPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9QmMfigkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9M30XgtOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9RTGPxQSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9XiA2AG0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9kbTc6/7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9g4mCyyEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9lSckMTfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq9hQjdHlPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9rz5oGpudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq96mATZg5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+AftpmEodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq98haTwDvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+H1DjR2KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+Zh42S+ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+fHYg7o0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+bSJ9AoodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+mvJiiItdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+4TsY2sJdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq+5K7yxzJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+/iTdLxqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+7kal1r7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/Hwv6CUYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/byV4X41dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/cz8HfMwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/YxrJr+HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/i3BpHqedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/xiosI3SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/yuscQyzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/us3qAz6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/47nxJ/YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAFakAPupdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAFexGDtgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrABck2P1ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrALnezlcRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAYlXiiqRdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7044e9873924d25d1b86376c7a75677648ce56050d6a57c9a71f1add99b1caa8
3
+ size 52079
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19a38e498cb4cd54b982e2cf2a3d9e4a3c57e975ac4915f3abf55dff05a451a8
3
+ size 53359
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2cf9a33ac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2cf9a1ecc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699400163407603711, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHTmTP/aoU79DDR4+9eRsv5MIMb++DR4+mA2fvj3sEL++DR4+fB6Ov/UtQT+tCx4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABe01v7C+dL+SQIq/bYMVPhOp2T+hzPg+ASMVP+6rk791PPM/l24rPeGTyT3iY6a+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABXlTy/mVYMv7Sk6T7mohG/myWuvxAXpT9Skqc/HTmTP/aoU79DDR4+K8wwvbh6u7xSGD+8h06ZPFcNoD3c3JA9aCbkvH1O3rwJia07mhBnv+qSxL4/tn0/Hj5IP3AAgz96/OO/XoFdv/XkbL+TCDG/vg0ePjkTMb2UMLu8Tvk8vJHhmjyiNp89vi6RPY221by81NW8+YWtO9RW0b5TQJ6+aQ9svl68Ej4fB8E/MO3dv3DXZb+YDZ++PewQv74NHj45EzG9lDC7vPaQPLyR4Zo8ojafPb4ukT2NttW8vNTVvAiGrTtMqQ++m0ouQCtGPL8BRZY9ynKyPTaLQD2+1GW/fB6Ov/UtQT+tCx4+uRMxvYRMurwg2Ua81TibPIYPnz2+LpE9jbbVvLzU1by6z6k7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.1501805 -0.8267969 0.15434746]\n [-0.9253686 -0.6915371 0.1543493 ]\n [-0.3106506 -0.5661047 0.1543493 ]\n [-1.1103053 0.7546075 0.15434141]]", "desired_goal": "[[-0.7106479 -0.95603466 -1.0800955 ]\n [ 0.14600916 1.7004722 0.4859362 ]\n [ 0.58256537 -1.1536844 1.9002825 ]\n [ 0.04185351 0.09842659 -0.3249808 ]]", "observation": "[[-0.73665375 -0.5481964 0.4563347 -0.5688919 -1.3605226 1.2897663\n 1.3091528 1.1501805 -0.8267969 0.15434746 -0.04316346 -0.02288567\n -0.01166351 0.0187142 0.07815044 0.07073376 -0.02785034 -0.02713704\n 0.00529588]\n [-0.90259707 -0.38393337 0.9910621 0.78219783 1.0234509 -1.7811425\n -0.86525524 -0.9253686 -0.6915371 0.1543493 -0.04323122 -0.02285031\n -0.01153405 0.01890639 0.07774092 0.07088993 -0.02608802 -0.02610242\n 0.00529551]\n [-0.40886557 -0.3090845 -0.23052754 0.14329669 1.5080298 -1.7338009\n -0.89781857 -0.3106506 -0.5661047 0.1543493 -0.04323122 -0.02285031\n -0.01150917 0.01890639 0.07774092 0.07088993 -0.02608802 -0.02610242\n 0.00529552]\n [-0.14029425 2.7233036 -0.7354457 0.0733738 0.08713301 0.04700776\n -0.89777744 -1.1103053 0.7546075 0.15434141 -0.0432317 -0.02274156\n -0.01213673 0.018948 0.07766633 0.07088993 -0.02608802 -0.02610242\n 0.00518223]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApWrqvf1ghj0K16M84DgGvgNviz0K16M8n06IOrlsLL0K16M8fCNtPfIaB70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAt6WUvRgogj0K16M8D05dPSjewL1uKdI9Rg4HvlkE4T0pQvs9hDUKvv5VDz0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApWrqvf1ghj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAOA4Br4Db4s9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACfTog6uWwsvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAfCNtPfIaB70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.11446122 0.06561468 0.02 ]\n [-0.13107634 0.06808283 0.02 ]\n [ 0.00103994 -0.04209587 0.02 ]\n [ 0.05789517 -0.03298468 0.02 ]]", "desired_goal": "[[-0.0725817 0.06355304 0.02 ]\n [ 0.05402952 -0.09417373 0.10261808]\n [-0.13189039 0.10987157 0.12268478]\n [-0.13496977 0.03499412 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1446122e-01\n 6.5614678e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3107634e-01\n 6.8082832e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0399407e-03\n -4.2095874e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.7895169e-02\n -3.2984681e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cq4KV32VVxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4Jkpqh11dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4R5/Tb35dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4kEG7jDLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4tEytV7ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4q1K5CnhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4zEoOQQudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4/ZkbxVidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq4/ysKb8WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5A/YSQHSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq4/DEvTPTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5HUqx1PndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5T++23KCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5VC2c8T0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5TfReC04dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5bzmwJPZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5oEzO5avdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5pgo5PuYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5nmlqJuVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq5v2+wkgPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq58fSH/LldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq59gOrhitdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq57i1AqusdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6DwLux8ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6Puo5xR3dX2UKGgGR8BFAAAAAAAAaAdLK2gIR0Cq6L1NQCSzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6QrbpNbkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6WnZkCmudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6ijBl+VkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6d+zUqhEdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq6edr433pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6i4kVvdedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6pFH8TBZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq61QXhwVCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq6xK20AtGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq61pEYwZgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq68CQtBfKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7IrpA2Q5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7EvalDWtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7JIVuaWpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7PPZyuIRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7cO9vjwQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7ZJ+UhV3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7dl8G9pRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7jsXizcAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7vzxoZhsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7sHuRcNZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq7wgXl8w6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq72uxB3RpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8Ds3AEdOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8AJnYg7pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8EkBKcurdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8KzMRpUQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8XEY4yXVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8Ti+cpb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8X8PFvQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8ehwEQoTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8qmwqy4XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8m+8wpOOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8rZB1LamdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8xfBFd9ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq89YPwuuidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq86BGhEjPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq8+c4o7V8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9Efm1YyPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9QmMfigkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9M30XgtOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9RTGPxQSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9XiA2AG0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9kbTc6/7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9g4mCyyEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9lSckMTfdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq9hQjdHlPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq9rz5oGpudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq96mATZg5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+AftpmEodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq98haTwDvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+H1DjR2KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+Zh42S+ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+fHYg7o0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+bSJ9AoodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+mvJiiItdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+4TsY2sJdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cq+5K7yxzJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+/iTdLxqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq+7kal1r7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/Hwv6CUYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/byV4X41dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/cz8HfMwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/YxrJr+HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/i3BpHqedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/xiosI3SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/yuscQyzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/us3qAz6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cq/47nxJ/YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAFakAPupdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAFexGDtgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrABck2P1ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrALnezlcRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CrAYlXiiqRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (939 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-08T00:33:44.041595"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df51da236daede5e7f161efe6bdf2f13322a516ec614cce0241d0f544012ed5e
3
+ size 3013