pszemraj commited on
Commit
a01b749
1 Parent(s): 6d05ae2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -60
README.md CHANGED
@@ -3,33 +3,53 @@ license: apache-2.0
3
  base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
- model-index:
7
- - name: distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN
8
- results: []
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pszemraj/eduscore-regression/runs/k6z0kenz)
15
- # distilbert-base-uncased-fineweb-edu-llama3-annotations-512-vN
 
 
 
 
 
16
 
17
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset.
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.2324
20
  - Mse: 0.2324
21
 
22
- ## Model description
23
 
24
- More information needed
25
 
26
- ## Intended uses & limitations
 
27
 
28
- More information needed
 
29
 
30
- ## Training and evaluation data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- More information needed
33
 
34
  ## Training procedure
35
 
@@ -46,50 +66,3 @@ The following hyperparameters were used during training:
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_ratio: 0.05
48
  - num_epochs: 1.0
49
-
50
- ### Training results
51
-
52
- | Training Loss | Epoch | Step | Validation Loss | Mse |
53
- |:-------------:|:------:|:----:|:---------------:|:------:|
54
- | 0.5361 | 0.0288 | 100 | 0.4934 | 0.4934 |
55
- | 0.3483 | 0.0576 | 200 | 0.3525 | 0.3525 |
56
- | 0.3238 | 0.0865 | 300 | 0.2931 | 0.2931 |
57
- | 0.2734 | 0.1153 | 400 | 0.3130 | 0.3130 |
58
- | 0.2891 | 0.1441 | 500 | 0.3298 | 0.3298 |
59
- | 0.2807 | 0.1729 | 600 | 0.2659 | 0.2659 |
60
- | 0.2727 | 0.2018 | 700 | 0.2690 | 0.2690 |
61
- | 0.2701 | 0.2306 | 800 | 0.2555 | 0.2555 |
62
- | 0.2954 | 0.2594 | 900 | 0.2501 | 0.2501 |
63
- | 0.2618 | 0.2882 | 1000 | 0.2483 | 0.2483 |
64
- | 0.3081 | 0.3171 | 1100 | 0.2456 | 0.2456 |
65
- | 0.2544 | 0.3459 | 1200 | 0.2370 | 0.2370 |
66
- | 0.2593 | 0.3747 | 1300 | 0.2349 | 0.2349 |
67
- | 0.2361 | 0.4035 | 1400 | 0.2406 | 0.2406 |
68
- | 0.2536 | 0.4324 | 1500 | 0.2453 | 0.2453 |
69
- | 0.26 | 0.4612 | 1600 | 0.2568 | 0.2568 |
70
- | 0.2897 | 0.4900 | 1700 | 0.2568 | 0.2568 |
71
- | 0.2597 | 0.5188 | 1800 | 0.2359 | 0.2359 |
72
- | 0.2489 | 0.5477 | 1900 | 0.2413 | 0.2413 |
73
- | 0.2376 | 0.5765 | 2000 | 0.2416 | 0.2416 |
74
- | 0.2424 | 0.6053 | 2100 | 0.2418 | 0.2418 |
75
- | 0.2798 | 0.6341 | 2200 | 0.2462 | 0.2462 |
76
- | 0.2523 | 0.6630 | 2300 | 0.2322 | 0.2322 |
77
- | 0.286 | 0.6918 | 2400 | 0.2432 | 0.2432 |
78
- | 0.247 | 0.7206 | 2500 | 0.2383 | 0.2383 |
79
- | 0.2856 | 0.7494 | 2600 | 0.2375 | 0.2375 |
80
- | 0.2216 | 0.7783 | 2700 | 0.2383 | 0.2383 |
81
- | 0.255 | 0.8071 | 2800 | 0.2367 | 0.2367 |
82
- | 0.2406 | 0.8359 | 2900 | 0.2345 | 0.2345 |
83
- | 0.2388 | 0.8647 | 3000 | 0.2282 | 0.2282 |
84
- | 0.2571 | 0.8936 | 3100 | 0.2331 | 0.2331 |
85
- | 0.2672 | 0.9224 | 3200 | 0.2336 | 0.2336 |
86
- | 0.2375 | 0.9512 | 3300 | 0.2337 | 0.2337 |
87
- | 0.2423 | 0.9800 | 3400 | 0.2324 | 0.2324 |
88
-
89
-
90
- ### Framework versions
91
-
92
- - Transformers 4.42.3
93
- - Pytorch 2.3.1+cu121
94
- - Datasets 2.20.0
95
- - Tokenizers 0.19.1
 
3
  base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
+ datasets:
7
+ - HuggingFaceFW/fineweb-edu-llama3-annotations
8
+ language:
9
+ - en
10
  ---
11
 
 
 
 
12
  [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/pszemraj/eduscore-regression/runs/k6z0kenz)
13
+ # distilbert-base-uncased: edu classifier
14
+
15
+ > [!IMPORTANT]
16
+ > This is a (rare) encoder that supports flash attention 2!
17
+ > Use `attn_implementation="flash_attention_2"` when loading w/ [FA2 installed](https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features)
18
+ > for faster inference.
19
 
20
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the HuggingFaceFW/fineweb-edu-llama3-annotations dataset.
21
  It achieves the following results on the evaluation set:
22
  - Loss: 0.2324
23
  - Mse: 0.2324
24
 
25
+ ## Usage
26
 
27
+ Note this is for CPU, for GPU you will need to make some (small) changes.
28
 
29
+ ```py
30
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
31
 
32
+ tokenizer = AutoTokenizer.from_pretrained("pszemraj/mpnet-base-edu-classifier")
33
+ model = AutoModelForSequenceClassification.from_pretrained("pszemraj/mpnet-base-edu-classifier")
34
 
35
+ text = "This is a test sentence."
36
+ inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True)
37
+ outputs = model(**inputs)
38
+ logits = outputs.logits.squeeze(-1).float().detach().numpy()
39
+ score = logits.item()
40
+ result = {
41
+ "text": text,
42
+ "score": score,
43
+ "int_score": int(round(max(0, min(score, 5)))),
44
+ }
45
+
46
+ print(result)
47
+ # {'text': 'This is a test sentence.', 'score': 0.3350256383419037, 'int_score': 0}
48
+ ```
49
+
50
+ ## Intended uses & limitations
51
 
52
+ Refer to the hf classifier's [model card](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier#limitations) for more details
53
 
54
  ## Training procedure
55
 
 
66
  - lr_scheduler_type: linear
67
  - lr_scheduler_warmup_ratio: 0.05
68
  - num_epochs: 1.0