load model from drive and convert
Browse files- README.md +3 -0
- config.json +43 -0
- latest +1 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- special_tokens_map.json +107 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +111 -0
- trainer_state.json +988 -0
- training_args.bin +3 -0
- zero_to_fp32.py +484 -0
README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# README - long-t5-tglobal-base-16384-booksum-V11-big_patent-V2
|
2 |
+
- this README was added because there wasn't one
|
3 |
+
- created 2022-07-31_12-14-50
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "pszemraj/long-t5-tglobal-base-16384-booksum-V11-big_patent-V1",
|
3 |
+
"architectures": [
|
4 |
+
"LongT5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 2048,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dense_act_fn": "gelu_new",
|
11 |
+
"dropout_rate": 0.1,
|
12 |
+
"early_stopping": true,
|
13 |
+
"encoder_attention_type": "transient-global",
|
14 |
+
"encoder_no_repeat_ngram_size": 4,
|
15 |
+
"eos_token_id": 1,
|
16 |
+
"feed_forward_proj": "gated-gelu",
|
17 |
+
"global_block_size": 16,
|
18 |
+
"initializer_factor": 1.0,
|
19 |
+
"is_encoder_decoder": true,
|
20 |
+
"is_gated_act": true,
|
21 |
+
"layer_norm_epsilon": 1e-06,
|
22 |
+
"length_penalty": 0.8,
|
23 |
+
"local_radius": 127,
|
24 |
+
"max_length": 512,
|
25 |
+
"min_length": 8,
|
26 |
+
"model_type": "longt5",
|
27 |
+
"n_positions": 4096,
|
28 |
+
"no_repeat_ngram_size": 3,
|
29 |
+
"num_beams": 2,
|
30 |
+
"num_decoder_layers": 12,
|
31 |
+
"num_heads": 12,
|
32 |
+
"num_layers": 12,
|
33 |
+
"output_past": true,
|
34 |
+
"pad_token_id": 0,
|
35 |
+
"relative_attention_max_distance": 128,
|
36 |
+
"relative_attention_num_buckets": 32,
|
37 |
+
"repetition_penalty": 3.5,
|
38 |
+
"tie_word_embeddings": false,
|
39 |
+
"torch_dtype": "float32",
|
40 |
+
"transformers_version": "4.21.0",
|
41 |
+
"use_cache": false,
|
42 |
+
"vocab_size": 32128
|
43 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step325
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1620415284b0de710de1a9af0ea4045a771f6b5f27a79294dddee9b09b068ad2
|
3 |
+
size 990388907
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcbda4b624bb1ed1b6c0fa22fb8bb1555261527dfbe1629fef4820faae0bffa4
|
3 |
+
size 14503
|
special_tokens_map.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": "</s>",
|
105 |
+
"pad_token": "<pad>",
|
106 |
+
"unk_token": "<unk>"
|
107 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": "</s>",
|
105 |
+
"extra_ids": 100,
|
106 |
+
"name_or_path": "pszemraj/long-t5-tglobal-base-16384-booksum-V11-big_patent-V1",
|
107 |
+
"pad_token": "<pad>",
|
108 |
+
"special_tokens_map_file": null,
|
109 |
+
"tokenizer_class": "T5Tokenizer",
|
110 |
+
"unk_token": "<unk>"
|
111 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,988 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.15840619002650258,
|
5 |
+
"global_step": 325,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 5.7142857142857135e-05,
|
13 |
+
"loss": 1.9649,
|
14 |
+
"step": 2
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 0.00011428571428571427,
|
19 |
+
"loss": 2.0221,
|
20 |
+
"step": 4
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.0,
|
24 |
+
"learning_rate": 0.0001714285714285714,
|
25 |
+
"loss": 1.9956,
|
26 |
+
"step": 6
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.0,
|
30 |
+
"learning_rate": 0.00022857142857142854,
|
31 |
+
"loss": 1.9373,
|
32 |
+
"step": 8
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.0,
|
36 |
+
"learning_rate": 0.0002857142857142857,
|
37 |
+
"loss": 2.0042,
|
38 |
+
"step": 10
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 0.0003428571428571428,
|
43 |
+
"loss": 1.9593,
|
44 |
+
"step": 12
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"learning_rate": 0.00039999999999999996,
|
49 |
+
"loss": 2.031,
|
50 |
+
"step": 14
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.01,
|
54 |
+
"learning_rate": 0.0004571428571428571,
|
55 |
+
"loss": 1.9644,
|
56 |
+
"step": 16
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.01,
|
60 |
+
"learning_rate": 0.0005142857142857142,
|
61 |
+
"loss": 1.9968,
|
62 |
+
"step": 18
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.01,
|
66 |
+
"learning_rate": 0.0005714285714285714,
|
67 |
+
"loss": 1.9694,
|
68 |
+
"step": 20
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.01,
|
72 |
+
"learning_rate": 0.0005999996407482917,
|
73 |
+
"loss": 1.9885,
|
74 |
+
"step": 22
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.01,
|
78 |
+
"learning_rate": 0.0005999967667397879,
|
79 |
+
"loss": 1.9295,
|
80 |
+
"step": 24
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.01,
|
84 |
+
"learning_rate": 0.0005999910187503132,
|
85 |
+
"loss": 1.9646,
|
86 |
+
"step": 26
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01,
|
90 |
+
"learning_rate": 0.0005999823968349338,
|
91 |
+
"loss": 1.9615,
|
92 |
+
"step": 28
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.01,
|
96 |
+
"learning_rate": 0.000599970901076248,
|
97 |
+
"loss": 1.9456,
|
98 |
+
"step": 30
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.02,
|
102 |
+
"learning_rate": 0.0005999565315843857,
|
103 |
+
"loss": 2.014,
|
104 |
+
"step": 32
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.02,
|
108 |
+
"learning_rate": 0.0005999392884970068,
|
109 |
+
"loss": 1.9118,
|
110 |
+
"step": 34
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.02,
|
114 |
+
"learning_rate": 0.0005999191719793011,
|
115 |
+
"loss": 1.944,
|
116 |
+
"step": 36
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.02,
|
120 |
+
"learning_rate": 0.0005998961822239856,
|
121 |
+
"loss": 1.9475,
|
122 |
+
"step": 38
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.02,
|
126 |
+
"learning_rate": 0.000599870319451303,
|
127 |
+
"loss": 2.038,
|
128 |
+
"step": 40
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.02,
|
132 |
+
"learning_rate": 0.0005998415839090198,
|
133 |
+
"loss": 1.9438,
|
134 |
+
"step": 42
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.02,
|
138 |
+
"learning_rate": 0.0005998099758724235,
|
139 |
+
"loss": 2.0804,
|
140 |
+
"step": 44
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.02,
|
144 |
+
"learning_rate": 0.0005997754956443205,
|
145 |
+
"loss": 1.9767,
|
146 |
+
"step": 46
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.02,
|
150 |
+
"learning_rate": 0.0005997381435550326,
|
151 |
+
"loss": 1.9322,
|
152 |
+
"step": 48
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.02,
|
156 |
+
"learning_rate": 0.0005996979199623944,
|
157 |
+
"loss": 1.9276,
|
158 |
+
"step": 50
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.03,
|
162 |
+
"learning_rate": 0.0005996548252517495,
|
163 |
+
"loss": 1.9933,
|
164 |
+
"step": 52
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.03,
|
168 |
+
"learning_rate": 0.0005996088598359469,
|
169 |
+
"loss": 1.8901,
|
170 |
+
"step": 54
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.03,
|
174 |
+
"learning_rate": 0.0005995600241553371,
|
175 |
+
"loss": 1.9472,
|
176 |
+
"step": 56
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.03,
|
180 |
+
"learning_rate": 0.000599508318677768,
|
181 |
+
"loss": 1.9855,
|
182 |
+
"step": 58
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.03,
|
186 |
+
"learning_rate": 0.00059945374389858,
|
187 |
+
"loss": 1.9887,
|
188 |
+
"step": 60
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.03,
|
192 |
+
"learning_rate": 0.0005993963003406018,
|
193 |
+
"loss": 1.9798,
|
194 |
+
"step": 62
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.03,
|
198 |
+
"learning_rate": 0.0005993359885541448,
|
199 |
+
"loss": 1.9956,
|
200 |
+
"step": 64
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.03,
|
204 |
+
"learning_rate": 0.0005992728091169984,
|
205 |
+
"loss": 1.9411,
|
206 |
+
"step": 66
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.03,
|
210 |
+
"learning_rate": 0.0005992067626344242,
|
211 |
+
"loss": 1.9722,
|
212 |
+
"step": 68
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.03,
|
216 |
+
"learning_rate": 0.00059913784973915,
|
217 |
+
"loss": 1.97,
|
218 |
+
"step": 70
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.04,
|
222 |
+
"learning_rate": 0.0005990660710913641,
|
223 |
+
"loss": 1.9612,
|
224 |
+
"step": 72
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.04,
|
228 |
+
"learning_rate": 0.0005989914273787089,
|
229 |
+
"loss": 1.8503,
|
230 |
+
"step": 74
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.04,
|
234 |
+
"learning_rate": 0.0005989139193162741,
|
235 |
+
"loss": 1.992,
|
236 |
+
"step": 76
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.04,
|
240 |
+
"learning_rate": 0.00059883354764659,
|
241 |
+
"loss": 1.9675,
|
242 |
+
"step": 78
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.04,
|
246 |
+
"learning_rate": 0.0005987503131396204,
|
247 |
+
"loss": 1.9609,
|
248 |
+
"step": 80
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.04,
|
252 |
+
"learning_rate": 0.0005986642165927551,
|
253 |
+
"loss": 2.0349,
|
254 |
+
"step": 82
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.04,
|
258 |
+
"learning_rate": 0.0005985752588308026,
|
259 |
+
"loss": 1.9824,
|
260 |
+
"step": 84
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.04,
|
264 |
+
"learning_rate": 0.0005984834407059817,
|
265 |
+
"loss": 1.9017,
|
266 |
+
"step": 86
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.04,
|
270 |
+
"learning_rate": 0.0005983887630979137,
|
271 |
+
"loss": 1.903,
|
272 |
+
"step": 88
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.04,
|
276 |
+
"learning_rate": 0.000598291226913614,
|
277 |
+
"loss": 1.9067,
|
278 |
+
"step": 90
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.04,
|
282 |
+
"learning_rate": 0.000598190833087483,
|
283 |
+
"loss": 1.941,
|
284 |
+
"step": 92
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.05,
|
288 |
+
"learning_rate": 0.0005980875825812974,
|
289 |
+
"loss": 1.9856,
|
290 |
+
"step": 94
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.05,
|
294 |
+
"learning_rate": 0.0005979814763842014,
|
295 |
+
"loss": 1.9555,
|
296 |
+
"step": 96
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.05,
|
300 |
+
"learning_rate": 0.0005978725155126967,
|
301 |
+
"loss": 1.9408,
|
302 |
+
"step": 98
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.05,
|
306 |
+
"learning_rate": 0.0005977607010106324,
|
307 |
+
"loss": 2.0131,
|
308 |
+
"step": 100
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.05,
|
312 |
+
"learning_rate": 0.0005976460339491963,
|
313 |
+
"loss": 1.9499,
|
314 |
+
"step": 102
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.05,
|
318 |
+
"learning_rate": 0.000597528515426903,
|
319 |
+
"loss": 1.9381,
|
320 |
+
"step": 104
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.05,
|
324 |
+
"learning_rate": 0.0005974081465695849,
|
325 |
+
"loss": 1.9805,
|
326 |
+
"step": 106
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.05,
|
330 |
+
"learning_rate": 0.0005972849285303804,
|
331 |
+
"loss": 1.8787,
|
332 |
+
"step": 108
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.05,
|
336 |
+
"learning_rate": 0.0005971588624897232,
|
337 |
+
"loss": 1.8912,
|
338 |
+
"step": 110
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.05,
|
342 |
+
"learning_rate": 0.0005970299496553309,
|
343 |
+
"loss": 1.9536,
|
344 |
+
"step": 112
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.06,
|
348 |
+
"learning_rate": 0.0005968981912621937,
|
349 |
+
"loss": 1.9388,
|
350 |
+
"step": 114
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.06,
|
354 |
+
"learning_rate": 0.0005967635885725623,
|
355 |
+
"loss": 2.0041,
|
356 |
+
"step": 116
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.06,
|
360 |
+
"learning_rate": 0.0005966261428759357,
|
361 |
+
"loss": 1.9447,
|
362 |
+
"step": 118
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.06,
|
366 |
+
"learning_rate": 0.0005964858554890492,
|
367 |
+
"loss": 2.0031,
|
368 |
+
"step": 120
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.06,
|
372 |
+
"learning_rate": 0.0005963427277558616,
|
373 |
+
"loss": 1.9063,
|
374 |
+
"step": 122
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.06,
|
378 |
+
"learning_rate": 0.0005961967610475422,
|
379 |
+
"loss": 1.9492,
|
380 |
+
"step": 124
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.06,
|
384 |
+
"learning_rate": 0.0005960479567624578,
|
385 |
+
"loss": 1.9956,
|
386 |
+
"step": 126
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.06,
|
390 |
+
"learning_rate": 0.0005958963163261595,
|
391 |
+
"loss": 1.9329,
|
392 |
+
"step": 128
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.06,
|
396 |
+
"learning_rate": 0.0005957418411913688,
|
397 |
+
"loss": 1.9424,
|
398 |
+
"step": 130
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.06,
|
402 |
+
"learning_rate": 0.0005955845328379636,
|
403 |
+
"loss": 1.9105,
|
404 |
+
"step": 132
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.07,
|
408 |
+
"learning_rate": 0.000595424392772964,
|
409 |
+
"loss": 1.9439,
|
410 |
+
"step": 134
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.07,
|
414 |
+
"learning_rate": 0.0005952614225305184,
|
415 |
+
"loss": 1.9586,
|
416 |
+
"step": 136
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.07,
|
420 |
+
"learning_rate": 0.0005950956236718882,
|
421 |
+
"loss": 1.8851,
|
422 |
+
"step": 138
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.07,
|
426 |
+
"learning_rate": 0.0005949269977854329,
|
427 |
+
"loss": 1.9031,
|
428 |
+
"step": 140
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.07,
|
432 |
+
"learning_rate": 0.0005947555464865954,
|
433 |
+
"loss": 1.9294,
|
434 |
+
"step": 142
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.07,
|
438 |
+
"learning_rate": 0.000594581271417886,
|
439 |
+
"loss": 1.9779,
|
440 |
+
"step": 144
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.07,
|
444 |
+
"learning_rate": 0.0005944041742488665,
|
445 |
+
"loss": 1.9515,
|
446 |
+
"step": 146
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.07,
|
450 |
+
"learning_rate": 0.0005942242566761351,
|
451 |
+
"loss": 1.9249,
|
452 |
+
"step": 148
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.07,
|
456 |
+
"learning_rate": 0.0005940415204233092,
|
457 |
+
"loss": 1.9104,
|
458 |
+
"step": 150
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.07,
|
462 |
+
"learning_rate": 0.0005938559672410093,
|
463 |
+
"loss": 1.9548,
|
464 |
+
"step": 152
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.08,
|
468 |
+
"learning_rate": 0.0005936675989068425,
|
469 |
+
"loss": 1.9314,
|
470 |
+
"step": 154
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.08,
|
474 |
+
"learning_rate": 0.0005934764172253849,
|
475 |
+
"loss": 1.9468,
|
476 |
+
"step": 156
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.08,
|
480 |
+
"learning_rate": 0.0005932824240281645,
|
481 |
+
"loss": 1.9821,
|
482 |
+
"step": 158
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.08,
|
486 |
+
"learning_rate": 0.0005930856211736438,
|
487 |
+
"loss": 1.9609,
|
488 |
+
"step": 160
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.08,
|
492 |
+
"learning_rate": 0.0005928860105472022,
|
493 |
+
"loss": 1.9261,
|
494 |
+
"step": 162
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.08,
|
498 |
+
"learning_rate": 0.0005926835940611172,
|
499 |
+
"loss": 1.9594,
|
500 |
+
"step": 164
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.08,
|
504 |
+
"learning_rate": 0.000592478373654547,
|
505 |
+
"loss": 1.8914,
|
506 |
+
"step": 166
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.08,
|
510 |
+
"learning_rate": 0.0005922703512935113,
|
511 |
+
"loss": 1.9509,
|
512 |
+
"step": 168
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.08,
|
516 |
+
"learning_rate": 0.0005920595289708723,
|
517 |
+
"loss": 1.9988,
|
518 |
+
"step": 170
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.08,
|
522 |
+
"learning_rate": 0.0005918459087063165,
|
523 |
+
"loss": 1.9886,
|
524 |
+
"step": 172
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.08,
|
528 |
+
"learning_rate": 0.0005916294925463346,
|
529 |
+
"loss": 2.0024,
|
530 |
+
"step": 174
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.09,
|
534 |
+
"learning_rate": 0.0005914102825642018,
|
535 |
+
"loss": 1.859,
|
536 |
+
"step": 176
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.09,
|
540 |
+
"learning_rate": 0.0005911882808599586,
|
541 |
+
"loss": 1.9439,
|
542 |
+
"step": 178
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.09,
|
546 |
+
"learning_rate": 0.0005909634895603902,
|
547 |
+
"loss": 1.9823,
|
548 |
+
"step": 180
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.09,
|
552 |
+
"learning_rate": 0.000590735910819006,
|
553 |
+
"loss": 1.9308,
|
554 |
+
"step": 182
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.09,
|
558 |
+
"learning_rate": 0.0005905055468160197,
|
559 |
+
"loss": 1.9459,
|
560 |
+
"step": 184
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.09,
|
564 |
+
"learning_rate": 0.0005902723997583274,
|
565 |
+
"loss": 1.9146,
|
566 |
+
"step": 186
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.09,
|
570 |
+
"learning_rate": 0.0005900364718794873,
|
571 |
+
"loss": 1.9036,
|
572 |
+
"step": 188
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.09,
|
576 |
+
"learning_rate": 0.0005897977654396977,
|
577 |
+
"loss": 1.9035,
|
578 |
+
"step": 190
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.09,
|
582 |
+
"learning_rate": 0.000589556282725776,
|
583 |
+
"loss": 1.9607,
|
584 |
+
"step": 192
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.09,
|
588 |
+
"learning_rate": 0.0005893120260511362,
|
589 |
+
"loss": 2.0468,
|
590 |
+
"step": 194
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.1,
|
594 |
+
"learning_rate": 0.0005890649977557668,
|
595 |
+
"loss": 1.9687,
|
596 |
+
"step": 196
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.1,
|
600 |
+
"learning_rate": 0.0005888152002062089,
|
601 |
+
"loss": 1.9958,
|
602 |
+
"step": 198
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.1,
|
606 |
+
"learning_rate": 0.0005885626357955329,
|
607 |
+
"loss": 1.9025,
|
608 |
+
"step": 200
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.1,
|
612 |
+
"learning_rate": 0.0005883073069433159,
|
613 |
+
"loss": 1.9077,
|
614 |
+
"step": 202
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.1,
|
618 |
+
"learning_rate": 0.0005880492160956185,
|
619 |
+
"loss": 1.9494,
|
620 |
+
"step": 204
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.1,
|
624 |
+
"learning_rate": 0.0005877883657249612,
|
625 |
+
"loss": 1.8716,
|
626 |
+
"step": 206
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.1,
|
630 |
+
"learning_rate": 0.000587524758330301,
|
631 |
+
"loss": 1.9075,
|
632 |
+
"step": 208
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.1,
|
636 |
+
"learning_rate": 0.0005872583964370073,
|
637 |
+
"loss": 1.9406,
|
638 |
+
"step": 210
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.1,
|
642 |
+
"learning_rate": 0.0005869892825968375,
|
643 |
+
"loss": 1.9179,
|
644 |
+
"step": 212
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.1,
|
648 |
+
"learning_rate": 0.0005867174193879131,
|
649 |
+
"loss": 1.9702,
|
650 |
+
"step": 214
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.11,
|
654 |
+
"learning_rate": 0.0005864428094146943,
|
655 |
+
"loss": 1.9297,
|
656 |
+
"step": 216
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.11,
|
660 |
+
"learning_rate": 0.0005861654553079557,
|
661 |
+
"loss": 1.8467,
|
662 |
+
"step": 218
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.11,
|
666 |
+
"learning_rate": 0.0005858853597247606,
|
667 |
+
"loss": 1.9145,
|
668 |
+
"step": 220
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.11,
|
672 |
+
"learning_rate": 0.0005856025253484358,
|
673 |
+
"loss": 1.944,
|
674 |
+
"step": 222
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.11,
|
678 |
+
"learning_rate": 0.0005853169548885461,
|
679 |
+
"loss": 1.9321,
|
680 |
+
"step": 224
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.11,
|
684 |
+
"learning_rate": 0.0005850286510808675,
|
685 |
+
"loss": 1.9838,
|
686 |
+
"step": 226
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.11,
|
690 |
+
"learning_rate": 0.0005847376166873624,
|
691 |
+
"loss": 1.9891,
|
692 |
+
"step": 228
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.11,
|
696 |
+
"learning_rate": 0.0005844438544961515,
|
697 |
+
"loss": 1.9384,
|
698 |
+
"step": 230
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.11,
|
702 |
+
"learning_rate": 0.0005841473673214886,
|
703 |
+
"loss": 1.8826,
|
704 |
+
"step": 232
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.11,
|
708 |
+
"learning_rate": 0.0005838481580037324,
|
709 |
+
"loss": 1.8983,
|
710 |
+
"step": 234
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.12,
|
714 |
+
"learning_rate": 0.0005835462294093202,
|
715 |
+
"loss": 1.8804,
|
716 |
+
"step": 236
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.12,
|
720 |
+
"learning_rate": 0.00058324158443074,
|
721 |
+
"loss": 1.8997,
|
722 |
+
"step": 238
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.12,
|
726 |
+
"learning_rate": 0.0005829342259865026,
|
727 |
+
"loss": 1.9478,
|
728 |
+
"step": 240
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.12,
|
732 |
+
"learning_rate": 0.0005826241570211144,
|
733 |
+
"loss": 1.9727,
|
734 |
+
"step": 242
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.12,
|
738 |
+
"learning_rate": 0.0005823113805050482,
|
739 |
+
"loss": 1.9216,
|
740 |
+
"step": 244
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.12,
|
744 |
+
"learning_rate": 0.0005819958994347157,
|
745 |
+
"loss": 1.9208,
|
746 |
+
"step": 246
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.12,
|
750 |
+
"learning_rate": 0.000581677716832438,
|
751 |
+
"loss": 1.9201,
|
752 |
+
"step": 248
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.12,
|
756 |
+
"learning_rate": 0.0005813568357464172,
|
757 |
+
"loss": 1.869,
|
758 |
+
"step": 250
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.12,
|
762 |
+
"learning_rate": 0.0005810332592507066,
|
763 |
+
"loss": 1.9111,
|
764 |
+
"step": 252
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.12,
|
768 |
+
"learning_rate": 0.0005807069904451822,
|
769 |
+
"loss": 1.8696,
|
770 |
+
"step": 254
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.12,
|
774 |
+
"learning_rate": 0.0005803780324555121,
|
775 |
+
"loss": 1.8946,
|
776 |
+
"step": 256
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.13,
|
780 |
+
"learning_rate": 0.0005800463884331269,
|
781 |
+
"loss": 1.9641,
|
782 |
+
"step": 258
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.13,
|
786 |
+
"learning_rate": 0.0005797120615551896,
|
787 |
+
"loss": 1.8923,
|
788 |
+
"step": 260
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.13,
|
792 |
+
"learning_rate": 0.0005793750550245648,
|
793 |
+
"loss": 1.8612,
|
794 |
+
"step": 262
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.13,
|
798 |
+
"learning_rate": 0.0005790353720697887,
|
799 |
+
"loss": 1.927,
|
800 |
+
"step": 264
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.13,
|
804 |
+
"learning_rate": 0.0005786930159450374,
|
805 |
+
"loss": 1.9709,
|
806 |
+
"step": 266
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.13,
|
810 |
+
"learning_rate": 0.0005783479899300962,
|
811 |
+
"loss": 1.9665,
|
812 |
+
"step": 268
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.13,
|
816 |
+
"learning_rate": 0.0005780002973303283,
|
817 |
+
"loss": 1.8657,
|
818 |
+
"step": 270
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.13,
|
822 |
+
"learning_rate": 0.0005776499414766424,
|
823 |
+
"loss": 2.0055,
|
824 |
+
"step": 272
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.13,
|
828 |
+
"learning_rate": 0.0005772969257254615,
|
829 |
+
"loss": 1.9147,
|
830 |
+
"step": 274
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.13,
|
834 |
+
"learning_rate": 0.0005769412534586908,
|
835 |
+
"loss": 1.9383,
|
836 |
+
"step": 276
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.14,
|
840 |
+
"learning_rate": 0.0005765829280836846,
|
841 |
+
"loss": 1.9575,
|
842 |
+
"step": 278
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.14,
|
846 |
+
"learning_rate": 0.0005762219530332142,
|
847 |
+
"loss": 1.9192,
|
848 |
+
"step": 280
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.14,
|
852 |
+
"learning_rate": 0.0005758583317654352,
|
853 |
+
"loss": 1.8842,
|
854 |
+
"step": 282
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.14,
|
858 |
+
"learning_rate": 0.0005754920677638535,
|
859 |
+
"loss": 1.9905,
|
860 |
+
"step": 284
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.14,
|
864 |
+
"learning_rate": 0.000575123164537293,
|
865 |
+
"loss": 1.9686,
|
866 |
+
"step": 286
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.14,
|
870 |
+
"learning_rate": 0.0005747516256198616,
|
871 |
+
"loss": 2.0003,
|
872 |
+
"step": 288
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.14,
|
876 |
+
"learning_rate": 0.0005743774545709163,
|
877 |
+
"loss": 1.9195,
|
878 |
+
"step": 290
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.14,
|
882 |
+
"learning_rate": 0.000574000654975031,
|
883 |
+
"loss": 1.8899,
|
884 |
+
"step": 292
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.14,
|
888 |
+
"learning_rate": 0.0005736212304419609,
|
889 |
+
"loss": 1.9143,
|
890 |
+
"step": 294
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.14,
|
894 |
+
"learning_rate": 0.000573239184606608,
|
895 |
+
"loss": 1.8431,
|
896 |
+
"step": 296
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.15,
|
900 |
+
"learning_rate": 0.0005728545211289866,
|
901 |
+
"loss": 1.8978,
|
902 |
+
"step": 298
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.15,
|
906 |
+
"learning_rate": 0.0005724672436941882,
|
907 |
+
"loss": 1.9017,
|
908 |
+
"step": 300
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.15,
|
912 |
+
"learning_rate": 0.0005720773560123461,
|
913 |
+
"loss": 1.8912,
|
914 |
+
"step": 302
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.15,
|
918 |
+
"learning_rate": 0.0005716848618185996,
|
919 |
+
"loss": 1.9412,
|
920 |
+
"step": 304
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.15,
|
924 |
+
"learning_rate": 0.000571289764873059,
|
925 |
+
"loss": 1.8843,
|
926 |
+
"step": 306
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.15,
|
930 |
+
"learning_rate": 0.0005708920689607684,
|
931 |
+
"loss": 1.8971,
|
932 |
+
"step": 308
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.15,
|
936 |
+
"learning_rate": 0.0005704917778916709,
|
937 |
+
"loss": 1.9243,
|
938 |
+
"step": 310
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.15,
|
942 |
+
"learning_rate": 0.0005700888955005706,
|
943 |
+
"loss": 1.8342,
|
944 |
+
"step": 312
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.15,
|
948 |
+
"learning_rate": 0.000569683425647097,
|
949 |
+
"loss": 1.8725,
|
950 |
+
"step": 314
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.15,
|
954 |
+
"learning_rate": 0.0005692753722156673,
|
955 |
+
"loss": 1.8597,
|
956 |
+
"step": 316
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.15,
|
960 |
+
"learning_rate": 0.0005688647391154496,
|
961 |
+
"loss": 1.954,
|
962 |
+
"step": 318
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.16,
|
966 |
+
"learning_rate": 0.0005684515302803256,
|
967 |
+
"loss": 1.9454,
|
968 |
+
"step": 320
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.16,
|
972 |
+
"learning_rate": 0.000568035749668852,
|
973 |
+
"loss": 1.9336,
|
974 |
+
"step": 322
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.16,
|
978 |
+
"learning_rate": 0.000567617401264224,
|
979 |
+
"loss": 1.96,
|
980 |
+
"step": 324
|
981 |
+
}
|
982 |
+
],
|
983 |
+
"max_steps": 2051,
|
984 |
+
"num_train_epochs": 1,
|
985 |
+
"total_flos": 4.557933379584e+17,
|
986 |
+
"trial_name": null,
|
987 |
+
"trial_params": null
|
988 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5163391d1b5a17f8e9a16e3191f7ee53c40429fe20ca10e4a048ce91e34dc316
|
3 |
+
size 4591
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
import deepspeed
|
21 |
+
from deepspeed.utils import logger
|
22 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
23 |
+
OPTIMIZER_STATE_DICT,
|
24 |
+
PARAM_SHAPES,
|
25 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
26 |
+
FP32_FLAT_GROUPS,
|
27 |
+
ZERO_STAGE,
|
28 |
+
PARTITION_COUNT,
|
29 |
+
PARAM_SHAPES,
|
30 |
+
BUFFER_NAMES)
|
31 |
+
|
32 |
+
debug = 0
|
33 |
+
|
34 |
+
# load to cpu
|
35 |
+
device = torch.device('cpu')
|
36 |
+
|
37 |
+
|
38 |
+
def atoi(text):
|
39 |
+
return int(text) if text.isdigit() else text
|
40 |
+
|
41 |
+
|
42 |
+
def natural_keys(text):
|
43 |
+
'''
|
44 |
+
alist.sort(key=natural_keys) sorts in human order
|
45 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
46 |
+
(See Toothy's implementation in the comments)
|
47 |
+
'''
|
48 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
49 |
+
|
50 |
+
|
51 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
52 |
+
if not os.path.isdir(checkpoint_dir):
|
53 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
54 |
+
|
55 |
+
# there should be only one file
|
56 |
+
if zero_stage == 2:
|
57 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
58 |
+
elif zero_stage == 3:
|
59 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
60 |
+
|
61 |
+
if not os.path.exists(file):
|
62 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
63 |
+
|
64 |
+
return file
|
65 |
+
|
66 |
+
|
67 |
+
def get_optim_files(checkpoint_dir):
|
68 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
69 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
70 |
+
"*_optim_states.pt")),
|
71 |
+
key=natural_keys)
|
72 |
+
|
73 |
+
if len(optim_files) == 0:
|
74 |
+
raise FileNotFoundError(
|
75 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
76 |
+
|
77 |
+
return optim_files
|
78 |
+
|
79 |
+
|
80 |
+
def parse_model_state(file):
|
81 |
+
state_dict = torch.load(file, map_location=device)
|
82 |
+
|
83 |
+
if BUFFER_NAMES not in state_dict:
|
84 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
85 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
86 |
+
if debug:
|
87 |
+
print("Found buffers:", buffer_names)
|
88 |
+
|
89 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
90 |
+
buffers = {
|
91 |
+
k: v.float()
|
92 |
+
for k,
|
93 |
+
v in state_dict["module"].items() if k in buffer_names
|
94 |
+
}
|
95 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
96 |
+
|
97 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
98 |
+
|
99 |
+
return buffers, param_shapes, ds_version
|
100 |
+
|
101 |
+
|
102 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
103 |
+
|
104 |
+
total_files = len(files)
|
105 |
+
state_dicts = []
|
106 |
+
for f in files:
|
107 |
+
state_dicts.append(torch.load(f, map_location=device))
|
108 |
+
|
109 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
110 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
111 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
112 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
113 |
+
|
114 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
115 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
116 |
+
# use the max of the partition_count to get the dp world_size.
|
117 |
+
|
118 |
+
if type(world_size) is list:
|
119 |
+
world_size = max(world_size)
|
120 |
+
|
121 |
+
if world_size != total_files:
|
122 |
+
raise ValueError(
|
123 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
124 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
125 |
+
)
|
126 |
+
|
127 |
+
# the groups are named differently in each stage
|
128 |
+
if zero_stage == 2:
|
129 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
130 |
+
elif zero_stage == 3:
|
131 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
132 |
+
else:
|
133 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
134 |
+
|
135 |
+
if zero_stage == 2:
|
136 |
+
fp32_flat_groups = [
|
137 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
138 |
+
for i in range(len(state_dicts))
|
139 |
+
]
|
140 |
+
elif zero_stage == 3:
|
141 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
142 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
143 |
+
#
|
144 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
145 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
146 |
+
|
147 |
+
fp32_flat_groups = [
|
148 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
149 |
+
0) for i in range(len(state_dicts))
|
150 |
+
]
|
151 |
+
|
152 |
+
return zero_stage, world_size, fp32_flat_groups
|
153 |
+
|
154 |
+
|
155 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
156 |
+
"""
|
157 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
158 |
+
|
159 |
+
Args:
|
160 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
161 |
+
|
162 |
+
"""
|
163 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
164 |
+
|
165 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
166 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
167 |
+
print(
|
168 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
169 |
+
|
170 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
171 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
172 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
176 |
+
param_shapes,
|
177 |
+
fp32_flat_groups,
|
178 |
+
buffers)
|
179 |
+
elif zero_stage == 3:
|
180 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
181 |
+
param_shapes,
|
182 |
+
fp32_flat_groups,
|
183 |
+
buffers)
|
184 |
+
|
185 |
+
|
186 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
187 |
+
param_shapes,
|
188 |
+
fp32_flat_groups,
|
189 |
+
buffers):
|
190 |
+
|
191 |
+
# Reconstruction protocol:
|
192 |
+
#
|
193 |
+
# XXX: document this
|
194 |
+
|
195 |
+
if debug:
|
196 |
+
for i in range(world_size):
|
197 |
+
for j in range(len(fp32_flat_groups[0])):
|
198 |
+
print(
|
199 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
200 |
+
|
201 |
+
# XXX: memory usage doubles here (zero2)
|
202 |
+
num_param_groups = len(fp32_flat_groups[0])
|
203 |
+
merged_single_partition_of_fp32_groups = []
|
204 |
+
for i in range(num_param_groups):
|
205 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
206 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
207 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
208 |
+
avail_numel = sum([
|
209 |
+
full_single_fp32_vector.numel()
|
210 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
211 |
+
])
|
212 |
+
|
213 |
+
if debug:
|
214 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
215 |
+
wanted_numel = sum(
|
216 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
217 |
+
# not asserting if there is a mismatch due to possible padding
|
218 |
+
print(f"Have {avail_numel} numels to process.")
|
219 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
220 |
+
|
221 |
+
state_dict = OrderedDict()
|
222 |
+
|
223 |
+
# buffers
|
224 |
+
state_dict.update(buffers)
|
225 |
+
if debug:
|
226 |
+
print(f"added {len(buffers)} buffers")
|
227 |
+
|
228 |
+
# params
|
229 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
230 |
+
# out-of-core computing solution
|
231 |
+
total_numel = 0
|
232 |
+
total_params = 0
|
233 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
234 |
+
offset = 0
|
235 |
+
avail_numel = full_single_fp32_vector.numel()
|
236 |
+
for name, shape in shapes.items():
|
237 |
+
|
238 |
+
unpartitioned_numel = shape.numel()
|
239 |
+
total_numel += unpartitioned_numel
|
240 |
+
total_params += 1
|
241 |
+
|
242 |
+
if debug:
|
243 |
+
print(
|
244 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
245 |
+
)
|
246 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
247 |
+
0,
|
248 |
+
offset,
|
249 |
+
unpartitioned_numel).view(shape)
|
250 |
+
offset += unpartitioned_numel
|
251 |
+
|
252 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
253 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
254 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
255 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
256 |
+
align_to = 2 * world_size
|
257 |
+
|
258 |
+
def zero2_align(x):
|
259 |
+
return align_to * math.ceil(x / align_to)
|
260 |
+
|
261 |
+
if debug:
|
262 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
263 |
+
|
264 |
+
offset = zero2_align(offset)
|
265 |
+
avail_numel = zero2_align(avail_numel)
|
266 |
+
|
267 |
+
if debug:
|
268 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
269 |
+
|
270 |
+
# Sanity check
|
271 |
+
if offset != avail_numel:
|
272 |
+
raise ValueError(
|
273 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
274 |
+
|
275 |
+
print(
|
276 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
277 |
+
)
|
278 |
+
|
279 |
+
return state_dict
|
280 |
+
|
281 |
+
|
282 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
283 |
+
remainder = unpartitioned_numel % world_size
|
284 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
285 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
286 |
+
return partitioned_numel, padding_numel
|
287 |
+
|
288 |
+
|
289 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
290 |
+
param_shapes,
|
291 |
+
fp32_flat_groups,
|
292 |
+
buffers):
|
293 |
+
|
294 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
295 |
+
# param, re-consolidating each param, while dealing with padding if any
|
296 |
+
|
297 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
298 |
+
# merge list of dicts, preserving order
|
299 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
for i in range(world_size):
|
303 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
304 |
+
|
305 |
+
wanted_params = len(param_shapes)
|
306 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
307 |
+
# not asserting if there is a mismatch due to possible padding
|
308 |
+
print(f"Have {avail_numel} numels to process.")
|
309 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
310 |
+
|
311 |
+
state_dict = OrderedDict()
|
312 |
+
|
313 |
+
# buffers
|
314 |
+
state_dict.update(buffers)
|
315 |
+
if debug:
|
316 |
+
print(f"added {len(buffers)} buffers")
|
317 |
+
|
318 |
+
# params
|
319 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
320 |
+
# out-of-core computing solution
|
321 |
+
offset = 0
|
322 |
+
total_numel = 0
|
323 |
+
total_params = 0
|
324 |
+
for name, shape in param_shapes.items():
|
325 |
+
|
326 |
+
unpartitioned_numel = shape.numel()
|
327 |
+
total_numel += unpartitioned_numel
|
328 |
+
total_params += 1
|
329 |
+
|
330 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
331 |
+
|
332 |
+
if debug:
|
333 |
+
print(
|
334 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
335 |
+
)
|
336 |
+
|
337 |
+
# XXX: memory usage doubles here
|
338 |
+
state_dict[name] = torch.cat(
|
339 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
340 |
+
offset,
|
341 |
+
partitioned_numel)
|
342 |
+
for i in range(world_size)),
|
343 |
+
0).narrow(0,
|
344 |
+
0,
|
345 |
+
unpartitioned_numel).view(shape)
|
346 |
+
offset += partitioned_numel
|
347 |
+
|
348 |
+
offset *= world_size
|
349 |
+
|
350 |
+
# Sanity check
|
351 |
+
if offset != avail_numel:
|
352 |
+
raise ValueError(
|
353 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
354 |
+
|
355 |
+
print(
|
356 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
357 |
+
)
|
358 |
+
|
359 |
+
return state_dict
|
360 |
+
|
361 |
+
|
362 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
363 |
+
"""
|
364 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
365 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
366 |
+
via a model hub.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
370 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
- pytorch ``state_dict``
|
374 |
+
|
375 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
376 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
377 |
+
the checkpoint.
|
378 |
+
|
379 |
+
A typical usage might be ::
|
380 |
+
|
381 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
382 |
+
# do the training and checkpoint saving
|
383 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
384 |
+
model = model.cpu() # move to cpu
|
385 |
+
model.load_state_dict(state_dict)
|
386 |
+
# submit to model hub or save the model to share with others
|
387 |
+
|
388 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
389 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
390 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
391 |
+
|
392 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
393 |
+
|
394 |
+
"""
|
395 |
+
if tag is None:
|
396 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
397 |
+
if os.path.isfile(latest_path):
|
398 |
+
with open(latest_path, 'r') as fd:
|
399 |
+
tag = fd.read().strip()
|
400 |
+
else:
|
401 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
402 |
+
|
403 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
404 |
+
|
405 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
406 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
407 |
+
|
408 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
409 |
+
|
410 |
+
|
411 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
412 |
+
"""
|
413 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
414 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
418 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
419 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
420 |
+
"""
|
421 |
+
|
422 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
423 |
+
print(f"Saving fp32 state dict to {output_file}")
|
424 |
+
torch.save(state_dict, output_file)
|
425 |
+
|
426 |
+
|
427 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
428 |
+
"""
|
429 |
+
1. Put the provided model to cpu
|
430 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
431 |
+
3. Load it into the provided model
|
432 |
+
|
433 |
+
Args:
|
434 |
+
- ``model``: the model object to update
|
435 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
436 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
437 |
+
|
438 |
+
Returns:
|
439 |
+
- ``model`: modified model
|
440 |
+
|
441 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
442 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
443 |
+
conveniently placed for you in the checkpoint folder.
|
444 |
+
|
445 |
+
A typical usage might be ::
|
446 |
+
|
447 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
448 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
449 |
+
# submit to model hub or save the model to share with others
|
450 |
+
|
451 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
452 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
453 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
454 |
+
|
455 |
+
"""
|
456 |
+
logger.info(f"Extracting fp32 weights")
|
457 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
458 |
+
|
459 |
+
logger.info(f"Overwriting model with fp32 weights")
|
460 |
+
model = model.cpu()
|
461 |
+
model.load_state_dict(state_dict, strict=False)
|
462 |
+
|
463 |
+
return model
|
464 |
+
|
465 |
+
|
466 |
+
if __name__ == "__main__":
|
467 |
+
|
468 |
+
parser = argparse.ArgumentParser()
|
469 |
+
parser.add_argument(
|
470 |
+
"checkpoint_dir",
|
471 |
+
type=str,
|
472 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
473 |
+
parser.add_argument(
|
474 |
+
"output_file",
|
475 |
+
type=str,
|
476 |
+
help=
|
477 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
478 |
+
)
|
479 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
480 |
+
args = parser.parse_args()
|
481 |
+
|
482 |
+
debug = args.debug
|
483 |
+
|
484 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|