pszemraj commited on
Commit
ec5278f
1 Parent(s): 3c9dbcc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -14
README.md CHANGED
@@ -193,20 +193,7 @@ Exploring how well long-document models trained on "lay summaries" of scientific
193
 
194
  ## Model description
195
 
196
- This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the `pszemraj/scientific_lay_summarisation-plos-norm` dataset.
197
- It achieves the following results on the evaluation set:
198
- - Loss: 1.6778
199
- - Rouge1: 49.1475
200
- - Rouge2: 18.9281
201
- - Rougel: 26.9893
202
- - Rougelsum: 45.0973
203
- - Gen Len: 399.4125
204
-
205
-
206
- ## Intended uses & limitations
207
-
208
- - Ability to generalize outside of the dataset domain (pubmed/bioscience type papers) has to be evaluated.
209
-
210
 
211
  ## Usage
212
 
@@ -226,8 +213,24 @@ summary = summarizer.summarize_string(text)
226
  print(summary)
227
  ```
228
 
 
 
 
 
 
229
  ## Training procedure
230
 
 
 
 
 
 
 
 
 
 
 
 
231
  ### Training hyperparameters
232
 
233
  The following hyperparameters were used during training:
 
193
 
194
  ## Model description
195
 
196
+ This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the `pszemraj/scientific_lay_summarisation-plos-norm` dataset for two epochs.
 
 
 
 
 
 
 
 
 
 
 
 
 
197
 
198
  ## Usage
199
 
 
213
  print(summary)
214
  ```
215
 
216
+ ## Intended uses & limitations
217
+
218
+ - Ability to generalize outside of the dataset domain (pubmed/bioscience type papers) has to be evaluated.
219
+
220
+
221
  ## Training procedure
222
 
223
+
224
+ ### Eval results
225
+
226
+ It achieves the following results on the evaluation set:
227
+ - Loss: 1.6778
228
+ - Rouge1: 49.1475
229
+ - Rouge2: 18.9281
230
+ - Rougel: 26.9893
231
+ - Rougelsum: 45.0973
232
+ - Gen Len: 399.4125
233
+
234
  ### Training hyperparameters
235
 
236
  The following hyperparameters were used during training: