--- license: bsd-3-clause tags: - generated_from_trainer datasets: - pszemraj/scientific_lay_summarisation-plos-norm metrics: - rouge model-index: - name: long-t5-tglobal-xl-16384-book-summary-scientific_lay_summarisation-plos-norm-16384-summ-v1 results: - task: name: Summarization type: summarization dataset: name: pszemraj/scientific_lay_summarisation-plos-norm type: pszemraj/scientific_lay_summarisation-plos-norm split: validation metrics: - name: Rouge1 type: rouge value: 44.3203 inference: False --- # long-t5-tglobal-xl-16384-booksci-summary-plos-10k This model is a fine-tuned version of [pszemraj/long-t5-tglobal-xl-16384-book-summary](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-book-summary) on the pszemraj/scientific_lay_summarisation-plos-norm dataset. It achieves the following results on the evaluation set: - Loss: 1.5041 - Rouge1: 44.3203 - Rouge2: 11.0576 - Rougel: 22.7584 - Rougelsum: 40.1462 - Gen Len: 256.66 ## Model description Another test of further fine-tuning booksum-based models, this one fine-tuned on the PLOS subset of lay-summaries for about 10k examples input, to make it roughly equivalent to [this checkpoint](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-booksci-summary-v1) fine-tuned on the ELIFE subset for two epochs (also around 10k examples). ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 165 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.7715 | 0.28 | 350 | 1.5310 | 43.4729 | 10.4616 | 22.1928 | 39.505 | 260.87 | | 1.9307 | 0.56 | 700 | 1.5102 | 44.1634 | 10.9336 | 22.3896 | 40.2939 | 253.58 | | 1.2981 | 0.84 | 1050 | 1.5046 | 44.2728 | 10.8455 | 22.4122 | 40.3019 | 261.29 |