pszemraj commited on
Commit
6b0315d
1 Parent(s): 989b89e

load model from drive and convert

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
README.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: mGPT-gpt-pierre_DS-msgs-df_Ep-2_Bs-4
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # mGPT-gpt-pierre_DS-msgs-df_Ep-2_Bs-4
14
+
15
+ This model is a fine-tuned version of [sberbank-ai/mGPT](https://huggingface.co/sberbank-ai/mGPT) on the None dataset.
16
+
17
+ ## Model description
18
+
19
+ More information needed
20
+
21
+ ## Intended uses & limitations
22
+
23
+ More information needed
24
+
25
+ ## Training and evaluation data
26
+
27
+ More information needed
28
+
29
+ ## Training procedure
30
+
31
+ ### Training hyperparameters
32
+
33
+ The following hyperparameters were used during training:
34
+ - learning_rate: 5e-05
35
+ - train_batch_size: 4
36
+ - eval_batch_size: 4
37
+ - seed: 42
38
+ - distributed_type: multi-GPU
39
+ - gradient_accumulation_steps: 8
40
+ - total_train_batch_size: 32
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: cosine_with_restarts
43
+ - lr_scheduler_warmup_ratio: 0.05
44
+ - num_epochs: 2
45
+
46
+ ### Framework versions
47
+
48
+ - Transformers 4.18.0
49
+ - Pytorch 1.11.0+cu113
50
+ - Datasets 2.1.0
51
+ - Tokenizers 0.12.1
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sberbank-ai/mGPT",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPT2LMHeadModel"
6
+ ],
7
+ "attn_pdrop": 0.1,
8
+ "bos_token_id": 50256,
9
+ "embd_pdrop": 0.1,
10
+ "eos_token_id": 50256,
11
+ "gradient_checkpointing": false,
12
+ "initializer_range": 0.02,
13
+ "layer_norm_epsilon": 1e-05,
14
+ "model_type": "gpt2",
15
+ "n_ctx": 2048,
16
+ "n_embd": 2048,
17
+ "n_head": 16,
18
+ "n_inner": null,
19
+ "n_layer": 24,
20
+ "n_positions": 2048,
21
+ "reorder_and_upcast_attn": false,
22
+ "resid_pdrop": 0.1,
23
+ "scale_attn_by_inverse_layer_idx": false,
24
+ "scale_attn_weights": true,
25
+ "summary_activation": null,
26
+ "summary_first_dropout": 0.1,
27
+ "summary_proj_to_labels": true,
28
+ "summary_type": "cls_index",
29
+ "summary_use_proj": true,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.18.0",
32
+ "use_cache": false,
33
+ "vocab_size": 100000
34
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3202
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d6db98cdd92c575f5bc1c7aa998e2491670c6a70c1663a8f33b4827fc72a1ee
3
+ size 6073088630
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "sberbank-ai/mGPT", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}
trainer_state.json ADDED
@@ -0,0 +1,3856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.29535224801497,
5
+ "global_step": 3201,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 1.4595617233228861e-05,
13
+ "loss": 5.7174,
14
+ "step": 5
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 2.0881607426192572e-05,
19
+ "loss": 4.073,
20
+ "step": 10
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 2.4558675968977286e-05,
25
+ "loss": 3.8184,
26
+ "step": 15
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 2.7167597619156276e-05,
31
+ "loss": 3.485,
32
+ "step": 20
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 2.9191234466457723e-05,
37
+ "loss": 3.4225,
38
+ "step": 25
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 3.0844666161941e-05,
43
+ "loss": 3.4162,
44
+ "step": 30
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 3.2242622741451356e-05,
49
+ "loss": 3.1498,
50
+ "step": 35
51
+ },
52
+ {
53
+ "epoch": 0.02,
54
+ "learning_rate": 3.345358781211998e-05,
55
+ "loss": 3.1313,
56
+ "step": 40
57
+ },
58
+ {
59
+ "epoch": 0.02,
60
+ "learning_rate": 3.4521734704725705e-05,
61
+ "loss": 3.1651,
62
+ "step": 45
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 3.547722465942143e-05,
67
+ "loss": 3.0759,
68
+ "step": 50
69
+ },
70
+ {
71
+ "epoch": 0.02,
72
+ "learning_rate": 3.6341570461211475e-05,
73
+ "loss": 3.2154,
74
+ "step": 55
75
+ },
76
+ {
77
+ "epoch": 0.02,
78
+ "learning_rate": 3.71306563549047e-05,
79
+ "loss": 3.0505,
80
+ "step": 60
81
+ },
82
+ {
83
+ "epoch": 0.03,
84
+ "learning_rate": 3.785654501111715e-05,
85
+ "loss": 3.0904,
86
+ "step": 65
87
+ },
88
+ {
89
+ "epoch": 0.03,
90
+ "learning_rate": 3.8528612934415064e-05,
91
+ "loss": 3.1834,
92
+ "step": 70
93
+ },
94
+ {
95
+ "epoch": 0.03,
96
+ "learning_rate": 3.9154293202206144e-05,
97
+ "loss": 3.1904,
98
+ "step": 75
99
+ },
100
+ {
101
+ "epoch": 0.03,
102
+ "learning_rate": 3.973957800508369e-05,
103
+ "loss": 3.1185,
104
+ "step": 80
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 4.028936856743207e-05,
109
+ "loss": 2.8454,
110
+ "step": 85
111
+ },
112
+ {
113
+ "epoch": 0.04,
114
+ "learning_rate": 4.080772489768941e-05,
115
+ "loss": 3.1069,
116
+ "step": 90
117
+ },
118
+ {
119
+ "epoch": 0.04,
120
+ "learning_rate": 4.1298047923155946e-05,
121
+ "loss": 3.1566,
122
+ "step": 95
123
+ },
124
+ {
125
+ "epoch": 0.04,
126
+ "learning_rate": 4.1763214852385144e-05,
127
+ "loss": 2.9029,
128
+ "step": 100
129
+ },
130
+ {
131
+ "epoch": 0.04,
132
+ "learning_rate": 4.220568147719977e-05,
133
+ "loss": 3.0556,
134
+ "step": 105
135
+ },
136
+ {
137
+ "epoch": 0.04,
138
+ "learning_rate": 4.262756065417519e-05,
139
+ "loss": 3.1721,
140
+ "step": 110
141
+ },
142
+ {
143
+ "epoch": 0.05,
144
+ "learning_rate": 4.3030683326266976e-05,
145
+ "loss": 2.9709,
146
+ "step": 115
147
+ },
148
+ {
149
+ "epoch": 0.05,
150
+ "learning_rate": 4.3416646547868404e-05,
151
+ "loss": 2.9186,
152
+ "step": 120
153
+ },
154
+ {
155
+ "epoch": 0.05,
156
+ "learning_rate": 4.378685169968659e-05,
157
+ "loss": 3.1484,
158
+ "step": 125
159
+ },
160
+ {
161
+ "epoch": 0.05,
162
+ "learning_rate": 4.414253520408086e-05,
163
+ "loss": 2.9578,
164
+ "step": 130
165
+ },
166
+ {
167
+ "epoch": 0.05,
168
+ "learning_rate": 4.4484793440474126e-05,
169
+ "loss": 3.0733,
170
+ "step": 135
171
+ },
172
+ {
173
+ "epoch": 0.06,
174
+ "learning_rate": 4.481460312737877e-05,
175
+ "loss": 3.0312,
176
+ "step": 140
177
+ },
178
+ {
179
+ "epoch": 0.06,
180
+ "learning_rate": 4.513283812620485e-05,
181
+ "loss": 2.9714,
182
+ "step": 145
183
+ },
184
+ {
185
+ "epoch": 0.06,
186
+ "learning_rate": 4.544028339516985e-05,
187
+ "loss": 2.9715,
188
+ "step": 150
189
+ },
190
+ {
191
+ "epoch": 0.06,
192
+ "learning_rate": 4.573764665433774e-05,
193
+ "loss": 3.1439,
194
+ "step": 155
195
+ },
196
+ {
197
+ "epoch": 0.06,
198
+ "learning_rate": 4.60255681980474e-05,
199
+ "loss": 2.9821,
200
+ "step": 160
201
+ },
202
+ {
203
+ "epoch": 0.07,
204
+ "learning_rate": 4.630462919695989e-05,
205
+ "loss": 2.9551,
206
+ "step": 165
207
+ },
208
+ {
209
+ "epoch": 0.07,
210
+ "learning_rate": 4.6575358760395774e-05,
211
+ "loss": 3.0681,
212
+ "step": 170
213
+ },
214
+ {
215
+ "epoch": 0.07,
216
+ "learning_rate": 4.683823997468022e-05,
217
+ "loss": 3.0571,
218
+ "step": 175
219
+ },
220
+ {
221
+ "epoch": 0.07,
222
+ "learning_rate": 4.709371509065312e-05,
223
+ "loss": 3.0496,
224
+ "step": 180
225
+ },
226
+ {
227
+ "epoch": 0.07,
228
+ "learning_rate": 4.7342190000274217e-05,
229
+ "loss": 2.9148,
230
+ "step": 185
231
+ },
232
+ {
233
+ "epoch": 0.08,
234
+ "learning_rate": 4.758403811611965e-05,
235
+ "loss": 2.9517,
236
+ "step": 190
237
+ },
238
+ {
239
+ "epoch": 0.08,
240
+ "learning_rate": 4.781960374686557e-05,
241
+ "loss": 2.8606,
242
+ "step": 195
243
+ },
244
+ {
245
+ "epoch": 0.08,
246
+ "learning_rate": 4.8049205045348844e-05,
247
+ "loss": 2.9665,
248
+ "step": 200
249
+ },
250
+ {
251
+ "epoch": 0.08,
252
+ "learning_rate": 4.827313659255119e-05,
253
+ "loss": 2.9399,
254
+ "step": 205
255
+ },
256
+ {
257
+ "epoch": 0.08,
258
+ "learning_rate": 4.849167167016348e-05,
259
+ "loss": 2.9148,
260
+ "step": 210
261
+ },
262
+ {
263
+ "epoch": 0.09,
264
+ "learning_rate": 4.8705064265710865e-05,
265
+ "loss": 2.8763,
266
+ "step": 215
267
+ },
268
+ {
269
+ "epoch": 0.09,
270
+ "learning_rate": 4.8913550847138896e-05,
271
+ "loss": 2.9652,
272
+ "step": 220
273
+ },
274
+ {
275
+ "epoch": 0.09,
276
+ "learning_rate": 4.911735193795457e-05,
277
+ "loss": 2.854,
278
+ "step": 225
279
+ },
280
+ {
281
+ "epoch": 0.09,
282
+ "learning_rate": 4.9316673519230676e-05,
283
+ "loss": 3.0612,
284
+ "step": 230
285
+ },
286
+ {
287
+ "epoch": 0.1,
288
+ "learning_rate": 4.951170828082003e-05,
289
+ "loss": 2.9249,
290
+ "step": 235
291
+ },
292
+ {
293
+ "epoch": 0.1,
294
+ "learning_rate": 4.970263674083211e-05,
295
+ "loss": 2.8752,
296
+ "step": 240
297
+ },
298
+ {
299
+ "epoch": 0.1,
300
+ "learning_rate": 4.988962824967385e-05,
301
+ "loss": 3.0823,
302
+ "step": 245
303
+ },
304
+ {
305
+ "epoch": 0.1,
306
+ "learning_rate": 5e-05,
307
+ "loss": 2.9281,
308
+ "step": 250
309
+ },
310
+ {
311
+ "epoch": 0.1,
312
+ "learning_rate": 5e-05,
313
+ "loss": 3.0877,
314
+ "step": 255
315
+ },
316
+ {
317
+ "epoch": 0.11,
318
+ "learning_rate": 5e-05,
319
+ "loss": 2.8499,
320
+ "step": 260
321
+ },
322
+ {
323
+ "epoch": 0.11,
324
+ "learning_rate": 5e-05,
325
+ "loss": 2.9582,
326
+ "step": 265
327
+ },
328
+ {
329
+ "epoch": 0.11,
330
+ "learning_rate": 5e-05,
331
+ "loss": 2.9118,
332
+ "step": 270
333
+ },
334
+ {
335
+ "epoch": 0.11,
336
+ "learning_rate": 5e-05,
337
+ "loss": 3.0349,
338
+ "step": 275
339
+ },
340
+ {
341
+ "epoch": 0.11,
342
+ "learning_rate": 5e-05,
343
+ "loss": 2.7885,
344
+ "step": 280
345
+ },
346
+ {
347
+ "epoch": 0.12,
348
+ "learning_rate": 5e-05,
349
+ "loss": 3.0644,
350
+ "step": 285
351
+ },
352
+ {
353
+ "epoch": 0.12,
354
+ "learning_rate": 5e-05,
355
+ "loss": 2.9174,
356
+ "step": 290
357
+ },
358
+ {
359
+ "epoch": 0.12,
360
+ "learning_rate": 5e-05,
361
+ "loss": 2.8956,
362
+ "step": 295
363
+ },
364
+ {
365
+ "epoch": 0.12,
366
+ "learning_rate": 5e-05,
367
+ "loss": 2.8977,
368
+ "step": 300
369
+ },
370
+ {
371
+ "epoch": 0.12,
372
+ "learning_rate": 5e-05,
373
+ "loss": 2.7825,
374
+ "step": 305
375
+ },
376
+ {
377
+ "epoch": 0.13,
378
+ "learning_rate": 5e-05,
379
+ "loss": 2.9082,
380
+ "step": 310
381
+ },
382
+ {
383
+ "epoch": 0.13,
384
+ "learning_rate": 5e-05,
385
+ "loss": 2.8638,
386
+ "step": 315
387
+ },
388
+ {
389
+ "epoch": 0.13,
390
+ "learning_rate": 5e-05,
391
+ "loss": 3.0091,
392
+ "step": 320
393
+ },
394
+ {
395
+ "epoch": 0.13,
396
+ "learning_rate": 5e-05,
397
+ "loss": 2.8423,
398
+ "step": 325
399
+ },
400
+ {
401
+ "epoch": 0.13,
402
+ "learning_rate": 5e-05,
403
+ "loss": 3.0593,
404
+ "step": 330
405
+ },
406
+ {
407
+ "epoch": 0.14,
408
+ "learning_rate": 5e-05,
409
+ "loss": 3.0978,
410
+ "step": 335
411
+ },
412
+ {
413
+ "epoch": 0.14,
414
+ "learning_rate": 5e-05,
415
+ "loss": 2.9759,
416
+ "step": 340
417
+ },
418
+ {
419
+ "epoch": 0.14,
420
+ "learning_rate": 5e-05,
421
+ "loss": 2.7671,
422
+ "step": 345
423
+ },
424
+ {
425
+ "epoch": 0.14,
426
+ "learning_rate": 5e-05,
427
+ "loss": 2.7337,
428
+ "step": 350
429
+ },
430
+ {
431
+ "epoch": 0.14,
432
+ "learning_rate": 5e-05,
433
+ "loss": 2.7853,
434
+ "step": 355
435
+ },
436
+ {
437
+ "epoch": 0.15,
438
+ "learning_rate": 5e-05,
439
+ "loss": 2.7746,
440
+ "step": 360
441
+ },
442
+ {
443
+ "epoch": 0.15,
444
+ "learning_rate": 5e-05,
445
+ "loss": 2.8793,
446
+ "step": 365
447
+ },
448
+ {
449
+ "epoch": 0.15,
450
+ "learning_rate": 5e-05,
451
+ "loss": 2.8478,
452
+ "step": 370
453
+ },
454
+ {
455
+ "epoch": 0.15,
456
+ "learning_rate": 5e-05,
457
+ "loss": 2.9319,
458
+ "step": 375
459
+ },
460
+ {
461
+ "epoch": 0.15,
462
+ "learning_rate": 5e-05,
463
+ "loss": 2.9938,
464
+ "step": 380
465
+ },
466
+ {
467
+ "epoch": 0.16,
468
+ "learning_rate": 5e-05,
469
+ "loss": 2.9035,
470
+ "step": 385
471
+ },
472
+ {
473
+ "epoch": 0.16,
474
+ "learning_rate": 5e-05,
475
+ "loss": 2.8904,
476
+ "step": 390
477
+ },
478
+ {
479
+ "epoch": 0.16,
480
+ "learning_rate": 5e-05,
481
+ "loss": 2.9606,
482
+ "step": 395
483
+ },
484
+ {
485
+ "epoch": 0.16,
486
+ "learning_rate": 5e-05,
487
+ "loss": 3.0521,
488
+ "step": 400
489
+ },
490
+ {
491
+ "epoch": 0.16,
492
+ "learning_rate": 5e-05,
493
+ "loss": 2.9584,
494
+ "step": 405
495
+ },
496
+ {
497
+ "epoch": 0.17,
498
+ "learning_rate": 5e-05,
499
+ "loss": 2.8218,
500
+ "step": 410
501
+ },
502
+ {
503
+ "epoch": 0.17,
504
+ "learning_rate": 5e-05,
505
+ "loss": 2.9647,
506
+ "step": 415
507
+ },
508
+ {
509
+ "epoch": 0.17,
510
+ "learning_rate": 5e-05,
511
+ "loss": 2.792,
512
+ "step": 420
513
+ },
514
+ {
515
+ "epoch": 0.17,
516
+ "learning_rate": 5e-05,
517
+ "loss": 2.656,
518
+ "step": 425
519
+ },
520
+ {
521
+ "epoch": 0.17,
522
+ "learning_rate": 5e-05,
523
+ "loss": 2.905,
524
+ "step": 430
525
+ },
526
+ {
527
+ "epoch": 0.18,
528
+ "learning_rate": 5e-05,
529
+ "loss": 2.7492,
530
+ "step": 435
531
+ },
532
+ {
533
+ "epoch": 0.18,
534
+ "learning_rate": 5e-05,
535
+ "loss": 2.924,
536
+ "step": 440
537
+ },
538
+ {
539
+ "epoch": 0.18,
540
+ "learning_rate": 5e-05,
541
+ "loss": 2.672,
542
+ "step": 445
543
+ },
544
+ {
545
+ "epoch": 0.18,
546
+ "learning_rate": 5e-05,
547
+ "loss": 2.9088,
548
+ "step": 450
549
+ },
550
+ {
551
+ "epoch": 0.18,
552
+ "learning_rate": 5e-05,
553
+ "loss": 2.8127,
554
+ "step": 455
555
+ },
556
+ {
557
+ "epoch": 0.19,
558
+ "learning_rate": 5e-05,
559
+ "loss": 2.7125,
560
+ "step": 460
561
+ },
562
+ {
563
+ "epoch": 0.19,
564
+ "learning_rate": 5e-05,
565
+ "loss": 2.9101,
566
+ "step": 465
567
+ },
568
+ {
569
+ "epoch": 0.19,
570
+ "learning_rate": 5e-05,
571
+ "loss": 2.878,
572
+ "step": 470
573
+ },
574
+ {
575
+ "epoch": 0.19,
576
+ "learning_rate": 5e-05,
577
+ "loss": 2.9539,
578
+ "step": 475
579
+ },
580
+ {
581
+ "epoch": 0.19,
582
+ "learning_rate": 5e-05,
583
+ "loss": 2.7836,
584
+ "step": 480
585
+ },
586
+ {
587
+ "epoch": 0.2,
588
+ "learning_rate": 5e-05,
589
+ "loss": 2.9817,
590
+ "step": 485
591
+ },
592
+ {
593
+ "epoch": 0.2,
594
+ "learning_rate": 5e-05,
595
+ "loss": 2.9691,
596
+ "step": 490
597
+ },
598
+ {
599
+ "epoch": 0.2,
600
+ "learning_rate": 5e-05,
601
+ "loss": 2.7756,
602
+ "step": 495
603
+ },
604
+ {
605
+ "epoch": 0.2,
606
+ "learning_rate": 5e-05,
607
+ "loss": 2.8108,
608
+ "step": 500
609
+ },
610
+ {
611
+ "epoch": 0.2,
612
+ "learning_rate": 5e-05,
613
+ "loss": 2.7651,
614
+ "step": 505
615
+ },
616
+ {
617
+ "epoch": 0.21,
618
+ "learning_rate": 5e-05,
619
+ "loss": 2.8161,
620
+ "step": 510
621
+ },
622
+ {
623
+ "epoch": 0.21,
624
+ "learning_rate": 5e-05,
625
+ "loss": 2.7832,
626
+ "step": 515
627
+ },
628
+ {
629
+ "epoch": 0.21,
630
+ "learning_rate": 5e-05,
631
+ "loss": 2.7455,
632
+ "step": 520
633
+ },
634
+ {
635
+ "epoch": 0.21,
636
+ "learning_rate": 5e-05,
637
+ "loss": 2.8838,
638
+ "step": 525
639
+ },
640
+ {
641
+ "epoch": 0.21,
642
+ "learning_rate": 5e-05,
643
+ "loss": 2.7434,
644
+ "step": 530
645
+ },
646
+ {
647
+ "epoch": 0.22,
648
+ "learning_rate": 5e-05,
649
+ "loss": 2.8708,
650
+ "step": 535
651
+ },
652
+ {
653
+ "epoch": 0.22,
654
+ "learning_rate": 5e-05,
655
+ "loss": 2.8642,
656
+ "step": 540
657
+ },
658
+ {
659
+ "epoch": 0.22,
660
+ "learning_rate": 5e-05,
661
+ "loss": 2.7339,
662
+ "step": 545
663
+ },
664
+ {
665
+ "epoch": 0.22,
666
+ "learning_rate": 5e-05,
667
+ "loss": 2.7499,
668
+ "step": 550
669
+ },
670
+ {
671
+ "epoch": 0.22,
672
+ "learning_rate": 5e-05,
673
+ "loss": 2.7786,
674
+ "step": 555
675
+ },
676
+ {
677
+ "epoch": 0.23,
678
+ "learning_rate": 5e-05,
679
+ "loss": 2.8487,
680
+ "step": 560
681
+ },
682
+ {
683
+ "epoch": 0.23,
684
+ "learning_rate": 5e-05,
685
+ "loss": 2.8406,
686
+ "step": 565
687
+ },
688
+ {
689
+ "epoch": 0.23,
690
+ "learning_rate": 5e-05,
691
+ "loss": 2.8463,
692
+ "step": 570
693
+ },
694
+ {
695
+ "epoch": 0.23,
696
+ "learning_rate": 5e-05,
697
+ "loss": 2.7209,
698
+ "step": 575
699
+ },
700
+ {
701
+ "epoch": 0.23,
702
+ "learning_rate": 5e-05,
703
+ "loss": 2.9581,
704
+ "step": 580
705
+ },
706
+ {
707
+ "epoch": 0.24,
708
+ "learning_rate": 5e-05,
709
+ "loss": 2.8408,
710
+ "step": 585
711
+ },
712
+ {
713
+ "epoch": 0.24,
714
+ "learning_rate": 5e-05,
715
+ "loss": 2.9146,
716
+ "step": 590
717
+ },
718
+ {
719
+ "epoch": 0.24,
720
+ "learning_rate": 5e-05,
721
+ "loss": 2.8323,
722
+ "step": 595
723
+ },
724
+ {
725
+ "epoch": 0.24,
726
+ "learning_rate": 5e-05,
727
+ "loss": 2.8473,
728
+ "step": 600
729
+ },
730
+ {
731
+ "epoch": 0.24,
732
+ "learning_rate": 5e-05,
733
+ "loss": 2.8023,
734
+ "step": 605
735
+ },
736
+ {
737
+ "epoch": 0.25,
738
+ "learning_rate": 5e-05,
739
+ "loss": 2.859,
740
+ "step": 610
741
+ },
742
+ {
743
+ "epoch": 0.25,
744
+ "learning_rate": 5e-05,
745
+ "loss": 2.8659,
746
+ "step": 615
747
+ },
748
+ {
749
+ "epoch": 0.25,
750
+ "learning_rate": 5e-05,
751
+ "loss": 2.6733,
752
+ "step": 620
753
+ },
754
+ {
755
+ "epoch": 0.25,
756
+ "learning_rate": 5e-05,
757
+ "loss": 2.7982,
758
+ "step": 625
759
+ },
760
+ {
761
+ "epoch": 0.25,
762
+ "learning_rate": 5e-05,
763
+ "loss": 2.8614,
764
+ "step": 630
765
+ },
766
+ {
767
+ "epoch": 0.26,
768
+ "learning_rate": 5e-05,
769
+ "loss": 2.8252,
770
+ "step": 635
771
+ },
772
+ {
773
+ "epoch": 0.26,
774
+ "learning_rate": 5e-05,
775
+ "loss": 2.7545,
776
+ "step": 640
777
+ },
778
+ {
779
+ "epoch": 0.26,
780
+ "learning_rate": 5e-05,
781
+ "loss": 2.9128,
782
+ "step": 645
783
+ },
784
+ {
785
+ "epoch": 0.26,
786
+ "learning_rate": 5e-05,
787
+ "loss": 2.6117,
788
+ "step": 650
789
+ },
790
+ {
791
+ "epoch": 0.27,
792
+ "learning_rate": 5e-05,
793
+ "loss": 2.8768,
794
+ "step": 655
795
+ },
796
+ {
797
+ "epoch": 0.27,
798
+ "learning_rate": 5e-05,
799
+ "loss": 2.8761,
800
+ "step": 660
801
+ },
802
+ {
803
+ "epoch": 0.27,
804
+ "learning_rate": 5e-05,
805
+ "loss": 2.7655,
806
+ "step": 665
807
+ },
808
+ {
809
+ "epoch": 0.27,
810
+ "learning_rate": 5e-05,
811
+ "loss": 2.7963,
812
+ "step": 670
813
+ },
814
+ {
815
+ "epoch": 0.27,
816
+ "learning_rate": 5e-05,
817
+ "loss": 2.8481,
818
+ "step": 675
819
+ },
820
+ {
821
+ "epoch": 0.28,
822
+ "learning_rate": 5e-05,
823
+ "loss": 2.7366,
824
+ "step": 680
825
+ },
826
+ {
827
+ "epoch": 0.28,
828
+ "learning_rate": 5e-05,
829
+ "loss": 2.9392,
830
+ "step": 685
831
+ },
832
+ {
833
+ "epoch": 0.28,
834
+ "learning_rate": 5e-05,
835
+ "loss": 2.8233,
836
+ "step": 690
837
+ },
838
+ {
839
+ "epoch": 0.28,
840
+ "learning_rate": 5e-05,
841
+ "loss": 2.7672,
842
+ "step": 695
843
+ },
844
+ {
845
+ "epoch": 0.28,
846
+ "learning_rate": 5e-05,
847
+ "loss": 2.789,
848
+ "step": 700
849
+ },
850
+ {
851
+ "epoch": 0.29,
852
+ "learning_rate": 5e-05,
853
+ "loss": 2.7065,
854
+ "step": 705
855
+ },
856
+ {
857
+ "epoch": 0.29,
858
+ "learning_rate": 5e-05,
859
+ "loss": 2.8101,
860
+ "step": 710
861
+ },
862
+ {
863
+ "epoch": 0.29,
864
+ "learning_rate": 5e-05,
865
+ "loss": 2.6257,
866
+ "step": 715
867
+ },
868
+ {
869
+ "epoch": 0.29,
870
+ "learning_rate": 5e-05,
871
+ "loss": 2.7759,
872
+ "step": 720
873
+ },
874
+ {
875
+ "epoch": 0.29,
876
+ "learning_rate": 5e-05,
877
+ "loss": 2.7739,
878
+ "step": 725
879
+ },
880
+ {
881
+ "epoch": 0.3,
882
+ "learning_rate": 5e-05,
883
+ "loss": 2.6239,
884
+ "step": 730
885
+ },
886
+ {
887
+ "epoch": 0.3,
888
+ "learning_rate": 5e-05,
889
+ "loss": 2.7561,
890
+ "step": 735
891
+ },
892
+ {
893
+ "epoch": 0.3,
894
+ "learning_rate": 5e-05,
895
+ "loss": 2.8663,
896
+ "step": 740
897
+ },
898
+ {
899
+ "epoch": 0.3,
900
+ "learning_rate": 5e-05,
901
+ "loss": 2.7199,
902
+ "step": 745
903
+ },
904
+ {
905
+ "epoch": 0.3,
906
+ "learning_rate": 5e-05,
907
+ "loss": 2.7612,
908
+ "step": 750
909
+ },
910
+ {
911
+ "epoch": 0.31,
912
+ "learning_rate": 5e-05,
913
+ "loss": 2.8215,
914
+ "step": 755
915
+ },
916
+ {
917
+ "epoch": 0.31,
918
+ "learning_rate": 5e-05,
919
+ "loss": 2.7875,
920
+ "step": 760
921
+ },
922
+ {
923
+ "epoch": 0.31,
924
+ "learning_rate": 5e-05,
925
+ "loss": 2.7699,
926
+ "step": 765
927
+ },
928
+ {
929
+ "epoch": 0.31,
930
+ "learning_rate": 5e-05,
931
+ "loss": 2.7907,
932
+ "step": 770
933
+ },
934
+ {
935
+ "epoch": 0.31,
936
+ "learning_rate": 5e-05,
937
+ "loss": 3.023,
938
+ "step": 775
939
+ },
940
+ {
941
+ "epoch": 0.32,
942
+ "learning_rate": 5e-05,
943
+ "loss": 2.7708,
944
+ "step": 780
945
+ },
946
+ {
947
+ "epoch": 0.32,
948
+ "learning_rate": 5e-05,
949
+ "loss": 2.8424,
950
+ "step": 785
951
+ },
952
+ {
953
+ "epoch": 0.32,
954
+ "learning_rate": 5e-05,
955
+ "loss": 2.8524,
956
+ "step": 790
957
+ },
958
+ {
959
+ "epoch": 0.32,
960
+ "learning_rate": 5e-05,
961
+ "loss": 2.7407,
962
+ "step": 795
963
+ },
964
+ {
965
+ "epoch": 0.32,
966
+ "learning_rate": 5e-05,
967
+ "loss": 2.8392,
968
+ "step": 800
969
+ },
970
+ {
971
+ "epoch": 0.33,
972
+ "learning_rate": 5e-05,
973
+ "loss": 2.7107,
974
+ "step": 805
975
+ },
976
+ {
977
+ "epoch": 0.33,
978
+ "learning_rate": 5e-05,
979
+ "loss": 2.7377,
980
+ "step": 810
981
+ },
982
+ {
983
+ "epoch": 0.33,
984
+ "learning_rate": 5e-05,
985
+ "loss": 2.8285,
986
+ "step": 815
987
+ },
988
+ {
989
+ "epoch": 0.33,
990
+ "learning_rate": 5e-05,
991
+ "loss": 2.7663,
992
+ "step": 820
993
+ },
994
+ {
995
+ "epoch": 0.33,
996
+ "learning_rate": 5e-05,
997
+ "loss": 2.819,
998
+ "step": 825
999
+ },
1000
+ {
1001
+ "epoch": 0.34,
1002
+ "learning_rate": 5e-05,
1003
+ "loss": 2.7749,
1004
+ "step": 830
1005
+ },
1006
+ {
1007
+ "epoch": 0.34,
1008
+ "learning_rate": 5e-05,
1009
+ "loss": 2.8127,
1010
+ "step": 835
1011
+ },
1012
+ {
1013
+ "epoch": 0.34,
1014
+ "learning_rate": 5e-05,
1015
+ "loss": 2.7182,
1016
+ "step": 840
1017
+ },
1018
+ {
1019
+ "epoch": 0.34,
1020
+ "learning_rate": 5e-05,
1021
+ "loss": 2.7712,
1022
+ "step": 845
1023
+ },
1024
+ {
1025
+ "epoch": 0.34,
1026
+ "learning_rate": 5e-05,
1027
+ "loss": 2.6442,
1028
+ "step": 850
1029
+ },
1030
+ {
1031
+ "epoch": 0.35,
1032
+ "learning_rate": 5e-05,
1033
+ "loss": 2.9364,
1034
+ "step": 855
1035
+ },
1036
+ {
1037
+ "epoch": 0.35,
1038
+ "learning_rate": 5e-05,
1039
+ "loss": 2.9922,
1040
+ "step": 860
1041
+ },
1042
+ {
1043
+ "epoch": 0.35,
1044
+ "learning_rate": 5e-05,
1045
+ "loss": 2.7308,
1046
+ "step": 865
1047
+ },
1048
+ {
1049
+ "epoch": 0.35,
1050
+ "learning_rate": 5e-05,
1051
+ "loss": 2.6962,
1052
+ "step": 870
1053
+ },
1054
+ {
1055
+ "epoch": 0.35,
1056
+ "learning_rate": 5e-05,
1057
+ "loss": 2.6137,
1058
+ "step": 875
1059
+ },
1060
+ {
1061
+ "epoch": 0.36,
1062
+ "learning_rate": 5e-05,
1063
+ "loss": 2.7204,
1064
+ "step": 880
1065
+ },
1066
+ {
1067
+ "epoch": 0.36,
1068
+ "learning_rate": 5e-05,
1069
+ "loss": 2.7692,
1070
+ "step": 885
1071
+ },
1072
+ {
1073
+ "epoch": 0.36,
1074
+ "learning_rate": 5e-05,
1075
+ "loss": 2.794,
1076
+ "step": 890
1077
+ },
1078
+ {
1079
+ "epoch": 0.36,
1080
+ "learning_rate": 5e-05,
1081
+ "loss": 2.7687,
1082
+ "step": 895
1083
+ },
1084
+ {
1085
+ "epoch": 0.36,
1086
+ "learning_rate": 5e-05,
1087
+ "loss": 2.7605,
1088
+ "step": 900
1089
+ },
1090
+ {
1091
+ "epoch": 0.37,
1092
+ "learning_rate": 5e-05,
1093
+ "loss": 2.7807,
1094
+ "step": 905
1095
+ },
1096
+ {
1097
+ "epoch": 0.37,
1098
+ "learning_rate": 5e-05,
1099
+ "loss": 2.7144,
1100
+ "step": 910
1101
+ },
1102
+ {
1103
+ "epoch": 0.37,
1104
+ "learning_rate": 5e-05,
1105
+ "loss": 2.6465,
1106
+ "step": 915
1107
+ },
1108
+ {
1109
+ "epoch": 0.37,
1110
+ "learning_rate": 5e-05,
1111
+ "loss": 2.8023,
1112
+ "step": 920
1113
+ },
1114
+ {
1115
+ "epoch": 0.37,
1116
+ "learning_rate": 5e-05,
1117
+ "loss": 2.6612,
1118
+ "step": 925
1119
+ },
1120
+ {
1121
+ "epoch": 0.38,
1122
+ "learning_rate": 5e-05,
1123
+ "loss": 2.8403,
1124
+ "step": 930
1125
+ },
1126
+ {
1127
+ "epoch": 0.38,
1128
+ "learning_rate": 5e-05,
1129
+ "loss": 2.7133,
1130
+ "step": 935
1131
+ },
1132
+ {
1133
+ "epoch": 0.38,
1134
+ "learning_rate": 5e-05,
1135
+ "loss": 2.9143,
1136
+ "step": 940
1137
+ },
1138
+ {
1139
+ "epoch": 0.38,
1140
+ "learning_rate": 5e-05,
1141
+ "loss": 2.7716,
1142
+ "step": 945
1143
+ },
1144
+ {
1145
+ "epoch": 0.38,
1146
+ "learning_rate": 5e-05,
1147
+ "loss": 2.7732,
1148
+ "step": 950
1149
+ },
1150
+ {
1151
+ "epoch": 0.39,
1152
+ "learning_rate": 5e-05,
1153
+ "loss": 2.788,
1154
+ "step": 955
1155
+ },
1156
+ {
1157
+ "epoch": 0.39,
1158
+ "learning_rate": 5e-05,
1159
+ "loss": 2.7164,
1160
+ "step": 960
1161
+ },
1162
+ {
1163
+ "epoch": 0.39,
1164
+ "learning_rate": 5e-05,
1165
+ "loss": 2.6721,
1166
+ "step": 965
1167
+ },
1168
+ {
1169
+ "epoch": 0.39,
1170
+ "learning_rate": 5e-05,
1171
+ "loss": 2.9455,
1172
+ "step": 970
1173
+ },
1174
+ {
1175
+ "epoch": 0.39,
1176
+ "learning_rate": 5e-05,
1177
+ "loss": 2.6689,
1178
+ "step": 975
1179
+ },
1180
+ {
1181
+ "epoch": 0.4,
1182
+ "learning_rate": 5e-05,
1183
+ "loss": 2.629,
1184
+ "step": 980
1185
+ },
1186
+ {
1187
+ "epoch": 0.4,
1188
+ "learning_rate": 5e-05,
1189
+ "loss": 2.8129,
1190
+ "step": 985
1191
+ },
1192
+ {
1193
+ "epoch": 0.4,
1194
+ "learning_rate": 5e-05,
1195
+ "loss": 2.6629,
1196
+ "step": 990
1197
+ },
1198
+ {
1199
+ "epoch": 0.4,
1200
+ "learning_rate": 5e-05,
1201
+ "loss": 2.8313,
1202
+ "step": 995
1203
+ },
1204
+ {
1205
+ "epoch": 0.4,
1206
+ "learning_rate": 5e-05,
1207
+ "loss": 2.9289,
1208
+ "step": 1000
1209
+ },
1210
+ {
1211
+ "epoch": 0.41,
1212
+ "learning_rate": 5e-05,
1213
+ "loss": 2.7845,
1214
+ "step": 1005
1215
+ },
1216
+ {
1217
+ "epoch": 0.41,
1218
+ "learning_rate": 5e-05,
1219
+ "loss": 2.7841,
1220
+ "step": 1010
1221
+ },
1222
+ {
1223
+ "epoch": 0.41,
1224
+ "learning_rate": 5e-05,
1225
+ "loss": 2.78,
1226
+ "step": 1015
1227
+ },
1228
+ {
1229
+ "epoch": 0.41,
1230
+ "learning_rate": 5e-05,
1231
+ "loss": 2.8525,
1232
+ "step": 1020
1233
+ },
1234
+ {
1235
+ "epoch": 0.41,
1236
+ "learning_rate": 5e-05,
1237
+ "loss": 2.7313,
1238
+ "step": 1025
1239
+ },
1240
+ {
1241
+ "epoch": 0.42,
1242
+ "learning_rate": 5e-05,
1243
+ "loss": 2.8678,
1244
+ "step": 1030
1245
+ },
1246
+ {
1247
+ "epoch": 0.42,
1248
+ "learning_rate": 5e-05,
1249
+ "loss": 2.8533,
1250
+ "step": 1035
1251
+ },
1252
+ {
1253
+ "epoch": 0.42,
1254
+ "learning_rate": 5e-05,
1255
+ "loss": 2.7356,
1256
+ "step": 1040
1257
+ },
1258
+ {
1259
+ "epoch": 0.42,
1260
+ "learning_rate": 5e-05,
1261
+ "loss": 2.7197,
1262
+ "step": 1045
1263
+ },
1264
+ {
1265
+ "epoch": 0.42,
1266
+ "learning_rate": 5e-05,
1267
+ "loss": 2.7888,
1268
+ "step": 1050
1269
+ },
1270
+ {
1271
+ "epoch": 0.43,
1272
+ "learning_rate": 5e-05,
1273
+ "loss": 2.8152,
1274
+ "step": 1055
1275
+ },
1276
+ {
1277
+ "epoch": 0.43,
1278
+ "learning_rate": 5e-05,
1279
+ "loss": 2.6529,
1280
+ "step": 1060
1281
+ },
1282
+ {
1283
+ "epoch": 0.43,
1284
+ "learning_rate": 5e-05,
1285
+ "loss": 2.715,
1286
+ "step": 1065
1287
+ },
1288
+ {
1289
+ "epoch": 0.43,
1290
+ "learning_rate": 5e-05,
1291
+ "loss": 2.7427,
1292
+ "step": 1070
1293
+ },
1294
+ {
1295
+ "epoch": 0.43,
1296
+ "learning_rate": 5e-05,
1297
+ "loss": 2.7064,
1298
+ "step": 1075
1299
+ },
1300
+ {
1301
+ "epoch": 0.44,
1302
+ "learning_rate": 5e-05,
1303
+ "loss": 2.8462,
1304
+ "step": 1080
1305
+ },
1306
+ {
1307
+ "epoch": 0.44,
1308
+ "learning_rate": 5e-05,
1309
+ "loss": 2.6574,
1310
+ "step": 1085
1311
+ },
1312
+ {
1313
+ "epoch": 0.44,
1314
+ "learning_rate": 5e-05,
1315
+ "loss": 2.8997,
1316
+ "step": 1090
1317
+ },
1318
+ {
1319
+ "epoch": 0.44,
1320
+ "learning_rate": 5e-05,
1321
+ "loss": 2.7303,
1322
+ "step": 1095
1323
+ },
1324
+ {
1325
+ "epoch": 0.45,
1326
+ "learning_rate": 5e-05,
1327
+ "loss": 2.7889,
1328
+ "step": 1100
1329
+ },
1330
+ {
1331
+ "epoch": 0.45,
1332
+ "learning_rate": 5e-05,
1333
+ "loss": 2.7992,
1334
+ "step": 1105
1335
+ },
1336
+ {
1337
+ "epoch": 0.45,
1338
+ "learning_rate": 5e-05,
1339
+ "loss": 2.62,
1340
+ "step": 1110
1341
+ },
1342
+ {
1343
+ "epoch": 0.45,
1344
+ "learning_rate": 5e-05,
1345
+ "loss": 2.6867,
1346
+ "step": 1115
1347
+ },
1348
+ {
1349
+ "epoch": 0.45,
1350
+ "learning_rate": 5e-05,
1351
+ "loss": 2.5923,
1352
+ "step": 1120
1353
+ },
1354
+ {
1355
+ "epoch": 0.46,
1356
+ "learning_rate": 5e-05,
1357
+ "loss": 2.6593,
1358
+ "step": 1125
1359
+ },
1360
+ {
1361
+ "epoch": 0.46,
1362
+ "learning_rate": 5e-05,
1363
+ "loss": 2.8382,
1364
+ "step": 1130
1365
+ },
1366
+ {
1367
+ "epoch": 0.46,
1368
+ "learning_rate": 5e-05,
1369
+ "loss": 2.5861,
1370
+ "step": 1135
1371
+ },
1372
+ {
1373
+ "epoch": 0.46,
1374
+ "learning_rate": 5e-05,
1375
+ "loss": 2.8416,
1376
+ "step": 1140
1377
+ },
1378
+ {
1379
+ "epoch": 0.46,
1380
+ "learning_rate": 5e-05,
1381
+ "loss": 2.9029,
1382
+ "step": 1145
1383
+ },
1384
+ {
1385
+ "epoch": 0.47,
1386
+ "learning_rate": 5e-05,
1387
+ "loss": 2.6753,
1388
+ "step": 1150
1389
+ },
1390
+ {
1391
+ "epoch": 0.47,
1392
+ "learning_rate": 5e-05,
1393
+ "loss": 2.6871,
1394
+ "step": 1155
1395
+ },
1396
+ {
1397
+ "epoch": 0.47,
1398
+ "learning_rate": 5e-05,
1399
+ "loss": 2.6733,
1400
+ "step": 1160
1401
+ },
1402
+ {
1403
+ "epoch": 0.47,
1404
+ "learning_rate": 5e-05,
1405
+ "loss": 2.6566,
1406
+ "step": 1165
1407
+ },
1408
+ {
1409
+ "epoch": 0.47,
1410
+ "learning_rate": 5e-05,
1411
+ "loss": 2.8209,
1412
+ "step": 1170
1413
+ },
1414
+ {
1415
+ "epoch": 0.48,
1416
+ "learning_rate": 5e-05,
1417
+ "loss": 2.8289,
1418
+ "step": 1175
1419
+ },
1420
+ {
1421
+ "epoch": 0.48,
1422
+ "learning_rate": 5e-05,
1423
+ "loss": 2.8023,
1424
+ "step": 1180
1425
+ },
1426
+ {
1427
+ "epoch": 0.48,
1428
+ "learning_rate": 5e-05,
1429
+ "loss": 2.6979,
1430
+ "step": 1185
1431
+ },
1432
+ {
1433
+ "epoch": 0.48,
1434
+ "learning_rate": 5e-05,
1435
+ "loss": 2.6954,
1436
+ "step": 1190
1437
+ },
1438
+ {
1439
+ "epoch": 0.48,
1440
+ "learning_rate": 5e-05,
1441
+ "loss": 2.7828,
1442
+ "step": 1195
1443
+ },
1444
+ {
1445
+ "epoch": 0.49,
1446
+ "learning_rate": 5e-05,
1447
+ "loss": 2.7909,
1448
+ "step": 1200
1449
+ },
1450
+ {
1451
+ "epoch": 0.49,
1452
+ "learning_rate": 5e-05,
1453
+ "loss": 2.6024,
1454
+ "step": 1205
1455
+ },
1456
+ {
1457
+ "epoch": 0.49,
1458
+ "learning_rate": 5e-05,
1459
+ "loss": 2.7298,
1460
+ "step": 1210
1461
+ },
1462
+ {
1463
+ "epoch": 0.49,
1464
+ "learning_rate": 5e-05,
1465
+ "loss": 2.5615,
1466
+ "step": 1215
1467
+ },
1468
+ {
1469
+ "epoch": 0.49,
1470
+ "learning_rate": 5e-05,
1471
+ "loss": 2.6645,
1472
+ "step": 1220
1473
+ },
1474
+ {
1475
+ "epoch": 0.5,
1476
+ "learning_rate": 5e-05,
1477
+ "loss": 2.6223,
1478
+ "step": 1225
1479
+ },
1480
+ {
1481
+ "epoch": 0.5,
1482
+ "learning_rate": 5e-05,
1483
+ "loss": 2.8121,
1484
+ "step": 1230
1485
+ },
1486
+ {
1487
+ "epoch": 0.5,
1488
+ "learning_rate": 5e-05,
1489
+ "loss": 2.7913,
1490
+ "step": 1235
1491
+ },
1492
+ {
1493
+ "epoch": 0.5,
1494
+ "learning_rate": 5e-05,
1495
+ "loss": 2.6475,
1496
+ "step": 1240
1497
+ },
1498
+ {
1499
+ "epoch": 0.5,
1500
+ "learning_rate": 5e-05,
1501
+ "loss": 2.7489,
1502
+ "step": 1245
1503
+ },
1504
+ {
1505
+ "epoch": 0.51,
1506
+ "learning_rate": 5e-05,
1507
+ "loss": 2.5228,
1508
+ "step": 1250
1509
+ },
1510
+ {
1511
+ "epoch": 0.51,
1512
+ "learning_rate": 5e-05,
1513
+ "loss": 2.7824,
1514
+ "step": 1255
1515
+ },
1516
+ {
1517
+ "epoch": 0.51,
1518
+ "learning_rate": 5e-05,
1519
+ "loss": 2.7072,
1520
+ "step": 1260
1521
+ },
1522
+ {
1523
+ "epoch": 0.51,
1524
+ "learning_rate": 5e-05,
1525
+ "loss": 2.8302,
1526
+ "step": 1265
1527
+ },
1528
+ {
1529
+ "epoch": 0.51,
1530
+ "learning_rate": 5e-05,
1531
+ "loss": 2.562,
1532
+ "step": 1270
1533
+ },
1534
+ {
1535
+ "epoch": 0.52,
1536
+ "learning_rate": 5e-05,
1537
+ "loss": 2.6751,
1538
+ "step": 1275
1539
+ },
1540
+ {
1541
+ "epoch": 0.52,
1542
+ "learning_rate": 5e-05,
1543
+ "loss": 2.6708,
1544
+ "step": 1280
1545
+ },
1546
+ {
1547
+ "epoch": 0.52,
1548
+ "learning_rate": 5e-05,
1549
+ "loss": 2.7931,
1550
+ "step": 1285
1551
+ },
1552
+ {
1553
+ "epoch": 0.52,
1554
+ "learning_rate": 5e-05,
1555
+ "loss": 2.8918,
1556
+ "step": 1290
1557
+ },
1558
+ {
1559
+ "epoch": 0.52,
1560
+ "learning_rate": 5e-05,
1561
+ "loss": 2.7633,
1562
+ "step": 1295
1563
+ },
1564
+ {
1565
+ "epoch": 0.53,
1566
+ "learning_rate": 5e-05,
1567
+ "loss": 2.6468,
1568
+ "step": 1300
1569
+ },
1570
+ {
1571
+ "epoch": 0.53,
1572
+ "learning_rate": 5e-05,
1573
+ "loss": 2.829,
1574
+ "step": 1305
1575
+ },
1576
+ {
1577
+ "epoch": 0.53,
1578
+ "learning_rate": 5e-05,
1579
+ "loss": 2.5203,
1580
+ "step": 1310
1581
+ },
1582
+ {
1583
+ "epoch": 0.53,
1584
+ "learning_rate": 5e-05,
1585
+ "loss": 2.8926,
1586
+ "step": 1315
1587
+ },
1588
+ {
1589
+ "epoch": 0.53,
1590
+ "learning_rate": 5e-05,
1591
+ "loss": 2.5314,
1592
+ "step": 1320
1593
+ },
1594
+ {
1595
+ "epoch": 0.54,
1596
+ "learning_rate": 5e-05,
1597
+ "loss": 2.6843,
1598
+ "step": 1325
1599
+ },
1600
+ {
1601
+ "epoch": 0.54,
1602
+ "learning_rate": 5e-05,
1603
+ "loss": 2.6962,
1604
+ "step": 1330
1605
+ },
1606
+ {
1607
+ "epoch": 0.54,
1608
+ "learning_rate": 5e-05,
1609
+ "loss": 2.9101,
1610
+ "step": 1335
1611
+ },
1612
+ {
1613
+ "epoch": 0.54,
1614
+ "learning_rate": 5e-05,
1615
+ "loss": 2.7593,
1616
+ "step": 1340
1617
+ },
1618
+ {
1619
+ "epoch": 0.54,
1620
+ "learning_rate": 5e-05,
1621
+ "loss": 2.7953,
1622
+ "step": 1345
1623
+ },
1624
+ {
1625
+ "epoch": 0.55,
1626
+ "learning_rate": 5e-05,
1627
+ "loss": 2.6882,
1628
+ "step": 1350
1629
+ },
1630
+ {
1631
+ "epoch": 0.55,
1632
+ "learning_rate": 5e-05,
1633
+ "loss": 2.6233,
1634
+ "step": 1355
1635
+ },
1636
+ {
1637
+ "epoch": 0.55,
1638
+ "learning_rate": 5e-05,
1639
+ "loss": 2.7277,
1640
+ "step": 1360
1641
+ },
1642
+ {
1643
+ "epoch": 0.55,
1644
+ "learning_rate": 5e-05,
1645
+ "loss": 2.5897,
1646
+ "step": 1365
1647
+ },
1648
+ {
1649
+ "epoch": 0.55,
1650
+ "learning_rate": 5e-05,
1651
+ "loss": 2.618,
1652
+ "step": 1370
1653
+ },
1654
+ {
1655
+ "epoch": 0.56,
1656
+ "learning_rate": 5e-05,
1657
+ "loss": 2.7698,
1658
+ "step": 1375
1659
+ },
1660
+ {
1661
+ "epoch": 0.56,
1662
+ "learning_rate": 5e-05,
1663
+ "loss": 2.6026,
1664
+ "step": 1380
1665
+ },
1666
+ {
1667
+ "epoch": 0.56,
1668
+ "learning_rate": 5e-05,
1669
+ "loss": 2.8144,
1670
+ "step": 1385
1671
+ },
1672
+ {
1673
+ "epoch": 0.56,
1674
+ "learning_rate": 5e-05,
1675
+ "loss": 2.7199,
1676
+ "step": 1390
1677
+ },
1678
+ {
1679
+ "epoch": 0.56,
1680
+ "learning_rate": 5e-05,
1681
+ "loss": 2.612,
1682
+ "step": 1395
1683
+ },
1684
+ {
1685
+ "epoch": 0.57,
1686
+ "learning_rate": 5e-05,
1687
+ "loss": 2.7256,
1688
+ "step": 1400
1689
+ },
1690
+ {
1691
+ "epoch": 0.57,
1692
+ "learning_rate": 5e-05,
1693
+ "loss": 2.7822,
1694
+ "step": 1405
1695
+ },
1696
+ {
1697
+ "epoch": 0.57,
1698
+ "learning_rate": 5e-05,
1699
+ "loss": 2.7898,
1700
+ "step": 1410
1701
+ },
1702
+ {
1703
+ "epoch": 0.57,
1704
+ "learning_rate": 5e-05,
1705
+ "loss": 2.6511,
1706
+ "step": 1415
1707
+ },
1708
+ {
1709
+ "epoch": 0.57,
1710
+ "learning_rate": 5e-05,
1711
+ "loss": 2.68,
1712
+ "step": 1420
1713
+ },
1714
+ {
1715
+ "epoch": 0.58,
1716
+ "learning_rate": 5e-05,
1717
+ "loss": 2.6535,
1718
+ "step": 1425
1719
+ },
1720
+ {
1721
+ "epoch": 0.58,
1722
+ "learning_rate": 5e-05,
1723
+ "loss": 2.7386,
1724
+ "step": 1430
1725
+ },
1726
+ {
1727
+ "epoch": 0.58,
1728
+ "learning_rate": 5e-05,
1729
+ "loss": 2.7598,
1730
+ "step": 1435
1731
+ },
1732
+ {
1733
+ "epoch": 0.58,
1734
+ "learning_rate": 5e-05,
1735
+ "loss": 2.7257,
1736
+ "step": 1440
1737
+ },
1738
+ {
1739
+ "epoch": 0.58,
1740
+ "learning_rate": 5e-05,
1741
+ "loss": 2.7083,
1742
+ "step": 1445
1743
+ },
1744
+ {
1745
+ "epoch": 0.59,
1746
+ "learning_rate": 5e-05,
1747
+ "loss": 2.6456,
1748
+ "step": 1450
1749
+ },
1750
+ {
1751
+ "epoch": 0.59,
1752
+ "learning_rate": 5e-05,
1753
+ "loss": 2.8651,
1754
+ "step": 1455
1755
+ },
1756
+ {
1757
+ "epoch": 0.59,
1758
+ "learning_rate": 5e-05,
1759
+ "loss": 2.6377,
1760
+ "step": 1460
1761
+ },
1762
+ {
1763
+ "epoch": 0.59,
1764
+ "learning_rate": 5e-05,
1765
+ "loss": 2.7162,
1766
+ "step": 1465
1767
+ },
1768
+ {
1769
+ "epoch": 0.59,
1770
+ "learning_rate": 5e-05,
1771
+ "loss": 2.7777,
1772
+ "step": 1470
1773
+ },
1774
+ {
1775
+ "epoch": 0.6,
1776
+ "learning_rate": 5e-05,
1777
+ "loss": 2.6719,
1778
+ "step": 1475
1779
+ },
1780
+ {
1781
+ "epoch": 0.6,
1782
+ "learning_rate": 5e-05,
1783
+ "loss": 2.5657,
1784
+ "step": 1480
1785
+ },
1786
+ {
1787
+ "epoch": 0.6,
1788
+ "learning_rate": 5e-05,
1789
+ "loss": 2.6202,
1790
+ "step": 1485
1791
+ },
1792
+ {
1793
+ "epoch": 0.6,
1794
+ "learning_rate": 5e-05,
1795
+ "loss": 2.7201,
1796
+ "step": 1490
1797
+ },
1798
+ {
1799
+ "epoch": 0.6,
1800
+ "learning_rate": 5e-05,
1801
+ "loss": 2.8134,
1802
+ "step": 1495
1803
+ },
1804
+ {
1805
+ "epoch": 0.61,
1806
+ "learning_rate": 5e-05,
1807
+ "loss": 2.9,
1808
+ "step": 1500
1809
+ },
1810
+ {
1811
+ "epoch": 0.61,
1812
+ "learning_rate": 5e-05,
1813
+ "loss": 2.8065,
1814
+ "step": 1505
1815
+ },
1816
+ {
1817
+ "epoch": 0.61,
1818
+ "learning_rate": 5e-05,
1819
+ "loss": 2.7656,
1820
+ "step": 1510
1821
+ },
1822
+ {
1823
+ "epoch": 0.61,
1824
+ "learning_rate": 5e-05,
1825
+ "loss": 2.7519,
1826
+ "step": 1515
1827
+ },
1828
+ {
1829
+ "epoch": 0.61,
1830
+ "learning_rate": 5e-05,
1831
+ "loss": 2.6922,
1832
+ "step": 1520
1833
+ },
1834
+ {
1835
+ "epoch": 0.62,
1836
+ "learning_rate": 5e-05,
1837
+ "loss": 2.5151,
1838
+ "step": 1525
1839
+ },
1840
+ {
1841
+ "epoch": 0.62,
1842
+ "learning_rate": 5e-05,
1843
+ "loss": 2.6186,
1844
+ "step": 1530
1845
+ },
1846
+ {
1847
+ "epoch": 0.62,
1848
+ "learning_rate": 5e-05,
1849
+ "loss": 2.6513,
1850
+ "step": 1535
1851
+ },
1852
+ {
1853
+ "epoch": 0.62,
1854
+ "learning_rate": 5e-05,
1855
+ "loss": 2.6852,
1856
+ "step": 1540
1857
+ },
1858
+ {
1859
+ "epoch": 0.63,
1860
+ "learning_rate": 5e-05,
1861
+ "loss": 2.7875,
1862
+ "step": 1545
1863
+ },
1864
+ {
1865
+ "epoch": 0.63,
1866
+ "learning_rate": 5e-05,
1867
+ "loss": 2.8141,
1868
+ "step": 1550
1869
+ },
1870
+ {
1871
+ "epoch": 0.63,
1872
+ "learning_rate": 5e-05,
1873
+ "loss": 2.6425,
1874
+ "step": 1555
1875
+ },
1876
+ {
1877
+ "epoch": 0.63,
1878
+ "learning_rate": 5e-05,
1879
+ "loss": 2.72,
1880
+ "step": 1560
1881
+ },
1882
+ {
1883
+ "epoch": 0.63,
1884
+ "learning_rate": 5e-05,
1885
+ "loss": 2.7421,
1886
+ "step": 1565
1887
+ },
1888
+ {
1889
+ "epoch": 0.64,
1890
+ "learning_rate": 5e-05,
1891
+ "loss": 2.7139,
1892
+ "step": 1570
1893
+ },
1894
+ {
1895
+ "epoch": 0.64,
1896
+ "learning_rate": 5e-05,
1897
+ "loss": 2.6792,
1898
+ "step": 1575
1899
+ },
1900
+ {
1901
+ "epoch": 0.64,
1902
+ "learning_rate": 5e-05,
1903
+ "loss": 2.5915,
1904
+ "step": 1580
1905
+ },
1906
+ {
1907
+ "epoch": 0.64,
1908
+ "learning_rate": 5e-05,
1909
+ "loss": 2.6162,
1910
+ "step": 1585
1911
+ },
1912
+ {
1913
+ "epoch": 0.64,
1914
+ "learning_rate": 5e-05,
1915
+ "loss": 2.617,
1916
+ "step": 1590
1917
+ },
1918
+ {
1919
+ "epoch": 0.65,
1920
+ "learning_rate": 5e-05,
1921
+ "loss": 2.7125,
1922
+ "step": 1595
1923
+ },
1924
+ {
1925
+ "epoch": 0.65,
1926
+ "learning_rate": 5e-05,
1927
+ "loss": 2.7146,
1928
+ "step": 1600
1929
+ },
1930
+ {
1931
+ "epoch": 0.65,
1932
+ "learning_rate": 5e-05,
1933
+ "loss": 2.5648,
1934
+ "step": 1605
1935
+ },
1936
+ {
1937
+ "epoch": 0.65,
1938
+ "learning_rate": 5e-05,
1939
+ "loss": 2.8611,
1940
+ "step": 1610
1941
+ },
1942
+ {
1943
+ "epoch": 0.65,
1944
+ "learning_rate": 5e-05,
1945
+ "loss": 2.5752,
1946
+ "step": 1615
1947
+ },
1948
+ {
1949
+ "epoch": 0.66,
1950
+ "learning_rate": 5e-05,
1951
+ "loss": 2.6658,
1952
+ "step": 1620
1953
+ },
1954
+ {
1955
+ "epoch": 0.66,
1956
+ "learning_rate": 5e-05,
1957
+ "loss": 2.7633,
1958
+ "step": 1625
1959
+ },
1960
+ {
1961
+ "epoch": 0.66,
1962
+ "learning_rate": 5e-05,
1963
+ "loss": 2.6336,
1964
+ "step": 1630
1965
+ },
1966
+ {
1967
+ "epoch": 0.66,
1968
+ "learning_rate": 5e-05,
1969
+ "loss": 2.771,
1970
+ "step": 1635
1971
+ },
1972
+ {
1973
+ "epoch": 0.66,
1974
+ "learning_rate": 5e-05,
1975
+ "loss": 2.8223,
1976
+ "step": 1640
1977
+ },
1978
+ {
1979
+ "epoch": 0.67,
1980
+ "learning_rate": 5e-05,
1981
+ "loss": 2.7626,
1982
+ "step": 1645
1983
+ },
1984
+ {
1985
+ "epoch": 0.67,
1986
+ "learning_rate": 5e-05,
1987
+ "loss": 2.7405,
1988
+ "step": 1650
1989
+ },
1990
+ {
1991
+ "epoch": 0.67,
1992
+ "learning_rate": 5e-05,
1993
+ "loss": 2.7567,
1994
+ "step": 1655
1995
+ },
1996
+ {
1997
+ "epoch": 0.67,
1998
+ "learning_rate": 5e-05,
1999
+ "loss": 2.8065,
2000
+ "step": 1660
2001
+ },
2002
+ {
2003
+ "epoch": 0.67,
2004
+ "learning_rate": 5e-05,
2005
+ "loss": 2.6281,
2006
+ "step": 1665
2007
+ },
2008
+ {
2009
+ "epoch": 0.68,
2010
+ "learning_rate": 5e-05,
2011
+ "loss": 2.5907,
2012
+ "step": 1670
2013
+ },
2014
+ {
2015
+ "epoch": 0.68,
2016
+ "learning_rate": 5e-05,
2017
+ "loss": 2.8343,
2018
+ "step": 1675
2019
+ },
2020
+ {
2021
+ "epoch": 0.68,
2022
+ "learning_rate": 5e-05,
2023
+ "loss": 2.5374,
2024
+ "step": 1680
2025
+ },
2026
+ {
2027
+ "epoch": 0.68,
2028
+ "learning_rate": 5e-05,
2029
+ "loss": 2.6573,
2030
+ "step": 1685
2031
+ },
2032
+ {
2033
+ "epoch": 0.68,
2034
+ "learning_rate": 5e-05,
2035
+ "loss": 2.7715,
2036
+ "step": 1690
2037
+ },
2038
+ {
2039
+ "epoch": 0.69,
2040
+ "learning_rate": 5e-05,
2041
+ "loss": 2.7022,
2042
+ "step": 1695
2043
+ },
2044
+ {
2045
+ "epoch": 0.69,
2046
+ "learning_rate": 5e-05,
2047
+ "loss": 2.6918,
2048
+ "step": 1700
2049
+ },
2050
+ {
2051
+ "epoch": 0.69,
2052
+ "learning_rate": 5e-05,
2053
+ "loss": 2.7902,
2054
+ "step": 1705
2055
+ },
2056
+ {
2057
+ "epoch": 0.69,
2058
+ "learning_rate": 5e-05,
2059
+ "loss": 2.7458,
2060
+ "step": 1710
2061
+ },
2062
+ {
2063
+ "epoch": 0.69,
2064
+ "learning_rate": 5e-05,
2065
+ "loss": 2.6979,
2066
+ "step": 1715
2067
+ },
2068
+ {
2069
+ "epoch": 0.7,
2070
+ "learning_rate": 5e-05,
2071
+ "loss": 2.7609,
2072
+ "step": 1720
2073
+ },
2074
+ {
2075
+ "epoch": 0.7,
2076
+ "learning_rate": 5e-05,
2077
+ "loss": 2.6818,
2078
+ "step": 1725
2079
+ },
2080
+ {
2081
+ "epoch": 0.7,
2082
+ "learning_rate": 5e-05,
2083
+ "loss": 2.6761,
2084
+ "step": 1730
2085
+ },
2086
+ {
2087
+ "epoch": 0.7,
2088
+ "learning_rate": 5e-05,
2089
+ "loss": 2.7184,
2090
+ "step": 1735
2091
+ },
2092
+ {
2093
+ "epoch": 0.7,
2094
+ "learning_rate": 5e-05,
2095
+ "loss": 2.585,
2096
+ "step": 1740
2097
+ },
2098
+ {
2099
+ "epoch": 0.71,
2100
+ "learning_rate": 5e-05,
2101
+ "loss": 2.7434,
2102
+ "step": 1745
2103
+ },
2104
+ {
2105
+ "epoch": 0.71,
2106
+ "learning_rate": 5e-05,
2107
+ "loss": 2.6304,
2108
+ "step": 1750
2109
+ },
2110
+ {
2111
+ "epoch": 0.71,
2112
+ "learning_rate": 5e-05,
2113
+ "loss": 2.841,
2114
+ "step": 1755
2115
+ },
2116
+ {
2117
+ "epoch": 0.71,
2118
+ "learning_rate": 5e-05,
2119
+ "loss": 2.7202,
2120
+ "step": 1760
2121
+ },
2122
+ {
2123
+ "epoch": 0.71,
2124
+ "learning_rate": 5e-05,
2125
+ "loss": 2.5044,
2126
+ "step": 1765
2127
+ },
2128
+ {
2129
+ "epoch": 0.72,
2130
+ "learning_rate": 5e-05,
2131
+ "loss": 2.655,
2132
+ "step": 1770
2133
+ },
2134
+ {
2135
+ "epoch": 0.72,
2136
+ "learning_rate": 5e-05,
2137
+ "loss": 2.5988,
2138
+ "step": 1775
2139
+ },
2140
+ {
2141
+ "epoch": 0.72,
2142
+ "learning_rate": 5e-05,
2143
+ "loss": 2.588,
2144
+ "step": 1780
2145
+ },
2146
+ {
2147
+ "epoch": 0.72,
2148
+ "learning_rate": 5e-05,
2149
+ "loss": 2.7623,
2150
+ "step": 1785
2151
+ },
2152
+ {
2153
+ "epoch": 0.72,
2154
+ "learning_rate": 5e-05,
2155
+ "loss": 2.7245,
2156
+ "step": 1790
2157
+ },
2158
+ {
2159
+ "epoch": 0.73,
2160
+ "learning_rate": 5e-05,
2161
+ "loss": 2.6365,
2162
+ "step": 1795
2163
+ },
2164
+ {
2165
+ "epoch": 0.73,
2166
+ "learning_rate": 5e-05,
2167
+ "loss": 2.6877,
2168
+ "step": 1800
2169
+ },
2170
+ {
2171
+ "epoch": 0.73,
2172
+ "learning_rate": 5e-05,
2173
+ "loss": 2.5983,
2174
+ "step": 1805
2175
+ },
2176
+ {
2177
+ "epoch": 0.73,
2178
+ "learning_rate": 5e-05,
2179
+ "loss": 2.7249,
2180
+ "step": 1810
2181
+ },
2182
+ {
2183
+ "epoch": 0.73,
2184
+ "learning_rate": 5e-05,
2185
+ "loss": 2.7584,
2186
+ "step": 1815
2187
+ },
2188
+ {
2189
+ "epoch": 0.74,
2190
+ "learning_rate": 5e-05,
2191
+ "loss": 2.7737,
2192
+ "step": 1820
2193
+ },
2194
+ {
2195
+ "epoch": 0.74,
2196
+ "learning_rate": 5e-05,
2197
+ "loss": 2.7943,
2198
+ "step": 1825
2199
+ },
2200
+ {
2201
+ "epoch": 0.74,
2202
+ "learning_rate": 5e-05,
2203
+ "loss": 2.6356,
2204
+ "step": 1830
2205
+ },
2206
+ {
2207
+ "epoch": 0.74,
2208
+ "learning_rate": 5e-05,
2209
+ "loss": 2.535,
2210
+ "step": 1835
2211
+ },
2212
+ {
2213
+ "epoch": 0.74,
2214
+ "learning_rate": 5e-05,
2215
+ "loss": 2.7207,
2216
+ "step": 1840
2217
+ },
2218
+ {
2219
+ "epoch": 0.75,
2220
+ "learning_rate": 5e-05,
2221
+ "loss": 2.7745,
2222
+ "step": 1845
2223
+ },
2224
+ {
2225
+ "epoch": 0.75,
2226
+ "learning_rate": 5e-05,
2227
+ "loss": 2.6661,
2228
+ "step": 1850
2229
+ },
2230
+ {
2231
+ "epoch": 0.75,
2232
+ "learning_rate": 5e-05,
2233
+ "loss": 2.6929,
2234
+ "step": 1855
2235
+ },
2236
+ {
2237
+ "epoch": 0.75,
2238
+ "learning_rate": 5e-05,
2239
+ "loss": 2.6875,
2240
+ "step": 1860
2241
+ },
2242
+ {
2243
+ "epoch": 0.75,
2244
+ "learning_rate": 5e-05,
2245
+ "loss": 2.7406,
2246
+ "step": 1865
2247
+ },
2248
+ {
2249
+ "epoch": 0.76,
2250
+ "learning_rate": 5e-05,
2251
+ "loss": 2.8286,
2252
+ "step": 1870
2253
+ },
2254
+ {
2255
+ "epoch": 0.76,
2256
+ "learning_rate": 5e-05,
2257
+ "loss": 2.7516,
2258
+ "step": 1875
2259
+ },
2260
+ {
2261
+ "epoch": 0.76,
2262
+ "learning_rate": 5e-05,
2263
+ "loss": 2.7069,
2264
+ "step": 1880
2265
+ },
2266
+ {
2267
+ "epoch": 0.76,
2268
+ "learning_rate": 5e-05,
2269
+ "loss": 2.6228,
2270
+ "step": 1885
2271
+ },
2272
+ {
2273
+ "epoch": 0.76,
2274
+ "learning_rate": 5e-05,
2275
+ "loss": 2.7762,
2276
+ "step": 1890
2277
+ },
2278
+ {
2279
+ "epoch": 0.77,
2280
+ "learning_rate": 5e-05,
2281
+ "loss": 2.694,
2282
+ "step": 1895
2283
+ },
2284
+ {
2285
+ "epoch": 0.77,
2286
+ "learning_rate": 5e-05,
2287
+ "loss": 2.6888,
2288
+ "step": 1900
2289
+ },
2290
+ {
2291
+ "epoch": 0.77,
2292
+ "learning_rate": 5e-05,
2293
+ "loss": 2.7838,
2294
+ "step": 1905
2295
+ },
2296
+ {
2297
+ "epoch": 0.77,
2298
+ "learning_rate": 5e-05,
2299
+ "loss": 2.6155,
2300
+ "step": 1910
2301
+ },
2302
+ {
2303
+ "epoch": 0.77,
2304
+ "learning_rate": 5e-05,
2305
+ "loss": 2.5779,
2306
+ "step": 1915
2307
+ },
2308
+ {
2309
+ "epoch": 0.78,
2310
+ "learning_rate": 5e-05,
2311
+ "loss": 2.6237,
2312
+ "step": 1920
2313
+ },
2314
+ {
2315
+ "epoch": 0.78,
2316
+ "learning_rate": 5e-05,
2317
+ "loss": 2.6635,
2318
+ "step": 1925
2319
+ },
2320
+ {
2321
+ "epoch": 0.78,
2322
+ "learning_rate": 5e-05,
2323
+ "loss": 2.6905,
2324
+ "step": 1930
2325
+ },
2326
+ {
2327
+ "epoch": 0.78,
2328
+ "learning_rate": 5e-05,
2329
+ "loss": 2.6694,
2330
+ "step": 1935
2331
+ },
2332
+ {
2333
+ "epoch": 0.78,
2334
+ "learning_rate": 5e-05,
2335
+ "loss": 2.4783,
2336
+ "step": 1940
2337
+ },
2338
+ {
2339
+ "epoch": 0.79,
2340
+ "learning_rate": 5e-05,
2341
+ "loss": 2.7565,
2342
+ "step": 1945
2343
+ },
2344
+ {
2345
+ "epoch": 0.79,
2346
+ "learning_rate": 5e-05,
2347
+ "loss": 2.7145,
2348
+ "step": 1950
2349
+ },
2350
+ {
2351
+ "epoch": 0.79,
2352
+ "learning_rate": 5e-05,
2353
+ "loss": 2.6378,
2354
+ "step": 1955
2355
+ },
2356
+ {
2357
+ "epoch": 0.79,
2358
+ "learning_rate": 5e-05,
2359
+ "loss": 2.7469,
2360
+ "step": 1960
2361
+ },
2362
+ {
2363
+ "epoch": 0.8,
2364
+ "learning_rate": 5e-05,
2365
+ "loss": 2.6073,
2366
+ "step": 1965
2367
+ },
2368
+ {
2369
+ "epoch": 0.8,
2370
+ "learning_rate": 5e-05,
2371
+ "loss": 2.7848,
2372
+ "step": 1970
2373
+ },
2374
+ {
2375
+ "epoch": 0.8,
2376
+ "learning_rate": 5e-05,
2377
+ "loss": 2.6595,
2378
+ "step": 1975
2379
+ },
2380
+ {
2381
+ "epoch": 0.8,
2382
+ "learning_rate": 5e-05,
2383
+ "loss": 2.8059,
2384
+ "step": 1980
2385
+ },
2386
+ {
2387
+ "epoch": 0.8,
2388
+ "learning_rate": 5e-05,
2389
+ "loss": 2.7439,
2390
+ "step": 1985
2391
+ },
2392
+ {
2393
+ "epoch": 0.81,
2394
+ "learning_rate": 5e-05,
2395
+ "loss": 2.583,
2396
+ "step": 1990
2397
+ },
2398
+ {
2399
+ "epoch": 0.81,
2400
+ "learning_rate": 5e-05,
2401
+ "loss": 2.7066,
2402
+ "step": 1995
2403
+ },
2404
+ {
2405
+ "epoch": 0.81,
2406
+ "learning_rate": 5e-05,
2407
+ "loss": 2.6711,
2408
+ "step": 2000
2409
+ },
2410
+ {
2411
+ "epoch": 0.81,
2412
+ "learning_rate": 5e-05,
2413
+ "loss": 2.6781,
2414
+ "step": 2005
2415
+ },
2416
+ {
2417
+ "epoch": 0.81,
2418
+ "learning_rate": 5e-05,
2419
+ "loss": 2.6504,
2420
+ "step": 2010
2421
+ },
2422
+ {
2423
+ "epoch": 0.82,
2424
+ "learning_rate": 5e-05,
2425
+ "loss": 2.601,
2426
+ "step": 2015
2427
+ },
2428
+ {
2429
+ "epoch": 0.82,
2430
+ "learning_rate": 5e-05,
2431
+ "loss": 2.7151,
2432
+ "step": 2020
2433
+ },
2434
+ {
2435
+ "epoch": 0.82,
2436
+ "learning_rate": 5e-05,
2437
+ "loss": 2.7105,
2438
+ "step": 2025
2439
+ },
2440
+ {
2441
+ "epoch": 0.82,
2442
+ "learning_rate": 5e-05,
2443
+ "loss": 2.4789,
2444
+ "step": 2030
2445
+ },
2446
+ {
2447
+ "epoch": 0.82,
2448
+ "learning_rate": 5e-05,
2449
+ "loss": 2.587,
2450
+ "step": 2035
2451
+ },
2452
+ {
2453
+ "epoch": 0.83,
2454
+ "learning_rate": 5e-05,
2455
+ "loss": 2.7408,
2456
+ "step": 2040
2457
+ },
2458
+ {
2459
+ "epoch": 0.83,
2460
+ "learning_rate": 5e-05,
2461
+ "loss": 2.777,
2462
+ "step": 2045
2463
+ },
2464
+ {
2465
+ "epoch": 0.83,
2466
+ "learning_rate": 5e-05,
2467
+ "loss": 2.6372,
2468
+ "step": 2050
2469
+ },
2470
+ {
2471
+ "epoch": 0.83,
2472
+ "learning_rate": 5e-05,
2473
+ "loss": 2.6225,
2474
+ "step": 2055
2475
+ },
2476
+ {
2477
+ "epoch": 0.83,
2478
+ "learning_rate": 5e-05,
2479
+ "loss": 2.4768,
2480
+ "step": 2060
2481
+ },
2482
+ {
2483
+ "epoch": 0.84,
2484
+ "learning_rate": 5e-05,
2485
+ "loss": 2.7418,
2486
+ "step": 2065
2487
+ },
2488
+ {
2489
+ "epoch": 0.84,
2490
+ "learning_rate": 5e-05,
2491
+ "loss": 2.758,
2492
+ "step": 2070
2493
+ },
2494
+ {
2495
+ "epoch": 0.84,
2496
+ "learning_rate": 5e-05,
2497
+ "loss": 2.6905,
2498
+ "step": 2075
2499
+ },
2500
+ {
2501
+ "epoch": 0.84,
2502
+ "learning_rate": 5e-05,
2503
+ "loss": 2.8158,
2504
+ "step": 2080
2505
+ },
2506
+ {
2507
+ "epoch": 0.84,
2508
+ "learning_rate": 5e-05,
2509
+ "loss": 2.809,
2510
+ "step": 2085
2511
+ },
2512
+ {
2513
+ "epoch": 0.85,
2514
+ "learning_rate": 5e-05,
2515
+ "loss": 2.7938,
2516
+ "step": 2090
2517
+ },
2518
+ {
2519
+ "epoch": 0.85,
2520
+ "learning_rate": 5e-05,
2521
+ "loss": 2.6229,
2522
+ "step": 2095
2523
+ },
2524
+ {
2525
+ "epoch": 0.85,
2526
+ "learning_rate": 5e-05,
2527
+ "loss": 2.6269,
2528
+ "step": 2100
2529
+ },
2530
+ {
2531
+ "epoch": 0.85,
2532
+ "learning_rate": 5e-05,
2533
+ "loss": 2.6908,
2534
+ "step": 2105
2535
+ },
2536
+ {
2537
+ "epoch": 0.85,
2538
+ "learning_rate": 5e-05,
2539
+ "loss": 2.7486,
2540
+ "step": 2110
2541
+ },
2542
+ {
2543
+ "epoch": 0.86,
2544
+ "learning_rate": 5e-05,
2545
+ "loss": 2.7088,
2546
+ "step": 2115
2547
+ },
2548
+ {
2549
+ "epoch": 0.86,
2550
+ "learning_rate": 5e-05,
2551
+ "loss": 2.5786,
2552
+ "step": 2120
2553
+ },
2554
+ {
2555
+ "epoch": 0.86,
2556
+ "learning_rate": 5e-05,
2557
+ "loss": 2.725,
2558
+ "step": 2125
2559
+ },
2560
+ {
2561
+ "epoch": 0.86,
2562
+ "learning_rate": 5e-05,
2563
+ "loss": 2.6511,
2564
+ "step": 2130
2565
+ },
2566
+ {
2567
+ "epoch": 0.86,
2568
+ "learning_rate": 5e-05,
2569
+ "loss": 2.4968,
2570
+ "step": 2135
2571
+ },
2572
+ {
2573
+ "epoch": 0.87,
2574
+ "learning_rate": 5e-05,
2575
+ "loss": 2.7425,
2576
+ "step": 2140
2577
+ },
2578
+ {
2579
+ "epoch": 0.87,
2580
+ "learning_rate": 5e-05,
2581
+ "loss": 2.5695,
2582
+ "step": 2145
2583
+ },
2584
+ {
2585
+ "epoch": 0.87,
2586
+ "learning_rate": 5e-05,
2587
+ "loss": 2.5162,
2588
+ "step": 2150
2589
+ },
2590
+ {
2591
+ "epoch": 0.87,
2592
+ "learning_rate": 5e-05,
2593
+ "loss": 2.504,
2594
+ "step": 2155
2595
+ },
2596
+ {
2597
+ "epoch": 0.87,
2598
+ "learning_rate": 5e-05,
2599
+ "loss": 2.7378,
2600
+ "step": 2160
2601
+ },
2602
+ {
2603
+ "epoch": 0.88,
2604
+ "learning_rate": 5e-05,
2605
+ "loss": 2.6437,
2606
+ "step": 2165
2607
+ },
2608
+ {
2609
+ "epoch": 0.88,
2610
+ "learning_rate": 5e-05,
2611
+ "loss": 2.629,
2612
+ "step": 2170
2613
+ },
2614
+ {
2615
+ "epoch": 0.88,
2616
+ "learning_rate": 5e-05,
2617
+ "loss": 2.5375,
2618
+ "step": 2175
2619
+ },
2620
+ {
2621
+ "epoch": 0.88,
2622
+ "learning_rate": 5e-05,
2623
+ "loss": 2.7463,
2624
+ "step": 2180
2625
+ },
2626
+ {
2627
+ "epoch": 0.88,
2628
+ "learning_rate": 5e-05,
2629
+ "loss": 2.5113,
2630
+ "step": 2185
2631
+ },
2632
+ {
2633
+ "epoch": 0.89,
2634
+ "learning_rate": 5e-05,
2635
+ "loss": 2.7163,
2636
+ "step": 2190
2637
+ },
2638
+ {
2639
+ "epoch": 0.89,
2640
+ "learning_rate": 5e-05,
2641
+ "loss": 2.8432,
2642
+ "step": 2195
2643
+ },
2644
+ {
2645
+ "epoch": 0.89,
2646
+ "learning_rate": 5e-05,
2647
+ "loss": 2.7086,
2648
+ "step": 2200
2649
+ },
2650
+ {
2651
+ "epoch": 0.89,
2652
+ "learning_rate": 5e-05,
2653
+ "loss": 2.784,
2654
+ "step": 2205
2655
+ },
2656
+ {
2657
+ "epoch": 0.89,
2658
+ "learning_rate": 5e-05,
2659
+ "loss": 2.7021,
2660
+ "step": 2210
2661
+ },
2662
+ {
2663
+ "epoch": 0.9,
2664
+ "learning_rate": 5e-05,
2665
+ "loss": 2.6244,
2666
+ "step": 2215
2667
+ },
2668
+ {
2669
+ "epoch": 0.9,
2670
+ "learning_rate": 5e-05,
2671
+ "loss": 2.633,
2672
+ "step": 2220
2673
+ },
2674
+ {
2675
+ "epoch": 0.9,
2676
+ "learning_rate": 5e-05,
2677
+ "loss": 2.7068,
2678
+ "step": 2225
2679
+ },
2680
+ {
2681
+ "epoch": 0.9,
2682
+ "learning_rate": 5e-05,
2683
+ "loss": 2.8057,
2684
+ "step": 2230
2685
+ },
2686
+ {
2687
+ "epoch": 0.9,
2688
+ "learning_rate": 5e-05,
2689
+ "loss": 2.677,
2690
+ "step": 2235
2691
+ },
2692
+ {
2693
+ "epoch": 0.91,
2694
+ "learning_rate": 5e-05,
2695
+ "loss": 2.7191,
2696
+ "step": 2240
2697
+ },
2698
+ {
2699
+ "epoch": 0.91,
2700
+ "learning_rate": 5e-05,
2701
+ "loss": 2.7879,
2702
+ "step": 2245
2703
+ },
2704
+ {
2705
+ "epoch": 0.91,
2706
+ "learning_rate": 5e-05,
2707
+ "loss": 2.7059,
2708
+ "step": 2250
2709
+ },
2710
+ {
2711
+ "epoch": 0.91,
2712
+ "learning_rate": 5e-05,
2713
+ "loss": 2.7086,
2714
+ "step": 2255
2715
+ },
2716
+ {
2717
+ "epoch": 0.91,
2718
+ "learning_rate": 5e-05,
2719
+ "loss": 2.6386,
2720
+ "step": 2260
2721
+ },
2722
+ {
2723
+ "epoch": 0.92,
2724
+ "learning_rate": 5e-05,
2725
+ "loss": 2.6557,
2726
+ "step": 2265
2727
+ },
2728
+ {
2729
+ "epoch": 0.92,
2730
+ "learning_rate": 5e-05,
2731
+ "loss": 2.7518,
2732
+ "step": 2270
2733
+ },
2734
+ {
2735
+ "epoch": 0.92,
2736
+ "learning_rate": 5e-05,
2737
+ "loss": 2.6355,
2738
+ "step": 2275
2739
+ },
2740
+ {
2741
+ "epoch": 0.92,
2742
+ "learning_rate": 5e-05,
2743
+ "loss": 2.6018,
2744
+ "step": 2280
2745
+ },
2746
+ {
2747
+ "epoch": 0.92,
2748
+ "learning_rate": 5e-05,
2749
+ "loss": 2.5666,
2750
+ "step": 2285
2751
+ },
2752
+ {
2753
+ "epoch": 0.93,
2754
+ "learning_rate": 5e-05,
2755
+ "loss": 2.7285,
2756
+ "step": 2290
2757
+ },
2758
+ {
2759
+ "epoch": 0.93,
2760
+ "learning_rate": 5e-05,
2761
+ "loss": 2.6315,
2762
+ "step": 2295
2763
+ },
2764
+ {
2765
+ "epoch": 0.93,
2766
+ "learning_rate": 5e-05,
2767
+ "loss": 2.7684,
2768
+ "step": 2300
2769
+ },
2770
+ {
2771
+ "epoch": 0.93,
2772
+ "learning_rate": 5e-05,
2773
+ "loss": 2.8144,
2774
+ "step": 2305
2775
+ },
2776
+ {
2777
+ "epoch": 0.93,
2778
+ "learning_rate": 5e-05,
2779
+ "loss": 2.6321,
2780
+ "step": 2310
2781
+ },
2782
+ {
2783
+ "epoch": 0.94,
2784
+ "learning_rate": 5e-05,
2785
+ "loss": 2.534,
2786
+ "step": 2315
2787
+ },
2788
+ {
2789
+ "epoch": 0.94,
2790
+ "learning_rate": 5e-05,
2791
+ "loss": 2.6426,
2792
+ "step": 2320
2793
+ },
2794
+ {
2795
+ "epoch": 0.94,
2796
+ "learning_rate": 5e-05,
2797
+ "loss": 2.7651,
2798
+ "step": 2325
2799
+ },
2800
+ {
2801
+ "epoch": 0.94,
2802
+ "learning_rate": 5e-05,
2803
+ "loss": 2.9408,
2804
+ "step": 2330
2805
+ },
2806
+ {
2807
+ "epoch": 0.94,
2808
+ "learning_rate": 5e-05,
2809
+ "loss": 2.5735,
2810
+ "step": 2335
2811
+ },
2812
+ {
2813
+ "epoch": 0.95,
2814
+ "learning_rate": 5e-05,
2815
+ "loss": 2.7254,
2816
+ "step": 2340
2817
+ },
2818
+ {
2819
+ "epoch": 0.95,
2820
+ "learning_rate": 5e-05,
2821
+ "loss": 2.5567,
2822
+ "step": 2345
2823
+ },
2824
+ {
2825
+ "epoch": 0.95,
2826
+ "learning_rate": 5e-05,
2827
+ "loss": 2.6888,
2828
+ "step": 2350
2829
+ },
2830
+ {
2831
+ "epoch": 0.95,
2832
+ "learning_rate": 5e-05,
2833
+ "loss": 2.615,
2834
+ "step": 2355
2835
+ },
2836
+ {
2837
+ "epoch": 0.95,
2838
+ "learning_rate": 5e-05,
2839
+ "loss": 2.7708,
2840
+ "step": 2360
2841
+ },
2842
+ {
2843
+ "epoch": 0.96,
2844
+ "learning_rate": 5e-05,
2845
+ "loss": 2.6665,
2846
+ "step": 2365
2847
+ },
2848
+ {
2849
+ "epoch": 0.96,
2850
+ "learning_rate": 5e-05,
2851
+ "loss": 2.5748,
2852
+ "step": 2370
2853
+ },
2854
+ {
2855
+ "epoch": 0.96,
2856
+ "learning_rate": 5e-05,
2857
+ "loss": 2.6752,
2858
+ "step": 2375
2859
+ },
2860
+ {
2861
+ "epoch": 0.96,
2862
+ "learning_rate": 5e-05,
2863
+ "loss": 2.5538,
2864
+ "step": 2380
2865
+ },
2866
+ {
2867
+ "epoch": 0.96,
2868
+ "learning_rate": 5e-05,
2869
+ "loss": 2.7701,
2870
+ "step": 2385
2871
+ },
2872
+ {
2873
+ "epoch": 0.97,
2874
+ "learning_rate": 5e-05,
2875
+ "loss": 2.7305,
2876
+ "step": 2390
2877
+ },
2878
+ {
2879
+ "epoch": 0.97,
2880
+ "learning_rate": 5e-05,
2881
+ "loss": 2.7094,
2882
+ "step": 2395
2883
+ },
2884
+ {
2885
+ "epoch": 0.97,
2886
+ "learning_rate": 5e-05,
2887
+ "loss": 2.9193,
2888
+ "step": 2400
2889
+ },
2890
+ {
2891
+ "epoch": 0.97,
2892
+ "learning_rate": 5e-05,
2893
+ "loss": 2.6647,
2894
+ "step": 2405
2895
+ },
2896
+ {
2897
+ "epoch": 0.98,
2898
+ "learning_rate": 5e-05,
2899
+ "loss": 2.6341,
2900
+ "step": 2410
2901
+ },
2902
+ {
2903
+ "epoch": 0.98,
2904
+ "learning_rate": 5e-05,
2905
+ "loss": 2.4908,
2906
+ "step": 2415
2907
+ },
2908
+ {
2909
+ "epoch": 0.98,
2910
+ "learning_rate": 5e-05,
2911
+ "loss": 2.5294,
2912
+ "step": 2420
2913
+ },
2914
+ {
2915
+ "epoch": 0.98,
2916
+ "learning_rate": 5e-05,
2917
+ "loss": 2.461,
2918
+ "step": 2425
2919
+ },
2920
+ {
2921
+ "epoch": 0.98,
2922
+ "learning_rate": 5e-05,
2923
+ "loss": 2.6605,
2924
+ "step": 2430
2925
+ },
2926
+ {
2927
+ "epoch": 0.99,
2928
+ "learning_rate": 5e-05,
2929
+ "loss": 2.5215,
2930
+ "step": 2435
2931
+ },
2932
+ {
2933
+ "epoch": 0.99,
2934
+ "learning_rate": 5e-05,
2935
+ "loss": 2.539,
2936
+ "step": 2440
2937
+ },
2938
+ {
2939
+ "epoch": 0.99,
2940
+ "learning_rate": 5e-05,
2941
+ "loss": 2.644,
2942
+ "step": 2445
2943
+ },
2944
+ {
2945
+ "epoch": 0.99,
2946
+ "learning_rate": 5e-05,
2947
+ "loss": 2.5958,
2948
+ "step": 2450
2949
+ },
2950
+ {
2951
+ "epoch": 0.99,
2952
+ "learning_rate": 5e-05,
2953
+ "loss": 2.528,
2954
+ "step": 2455
2955
+ },
2956
+ {
2957
+ "epoch": 1.0,
2958
+ "learning_rate": 5e-05,
2959
+ "loss": 2.6468,
2960
+ "step": 2460
2961
+ },
2962
+ {
2963
+ "epoch": 1.0,
2964
+ "learning_rate": 5e-05,
2965
+ "loss": 2.6027,
2966
+ "step": 2465
2967
+ },
2968
+ {
2969
+ "epoch": 1.0,
2970
+ "learning_rate": 5e-05,
2971
+ "loss": 2.4891,
2972
+ "step": 2470
2973
+ },
2974
+ {
2975
+ "epoch": 1.0,
2976
+ "learning_rate": 5e-05,
2977
+ "loss": 2.7302,
2978
+ "step": 2475
2979
+ },
2980
+ {
2981
+ "epoch": 1.0,
2982
+ "learning_rate": 5e-05,
2983
+ "loss": 2.2587,
2984
+ "step": 2480
2985
+ },
2986
+ {
2987
+ "epoch": 1.01,
2988
+ "learning_rate": 5e-05,
2989
+ "loss": 2.3727,
2990
+ "step": 2485
2991
+ },
2992
+ {
2993
+ "epoch": 1.01,
2994
+ "learning_rate": 5e-05,
2995
+ "loss": 2.2232,
2996
+ "step": 2490
2997
+ },
2998
+ {
2999
+ "epoch": 1.01,
3000
+ "learning_rate": 5e-05,
3001
+ "loss": 2.2597,
3002
+ "step": 2495
3003
+ },
3004
+ {
3005
+ "epoch": 1.01,
3006
+ "learning_rate": 5e-05,
3007
+ "loss": 2.0625,
3008
+ "step": 2500
3009
+ },
3010
+ {
3011
+ "epoch": 1.01,
3012
+ "learning_rate": 5e-05,
3013
+ "loss": 2.2327,
3014
+ "step": 2505
3015
+ },
3016
+ {
3017
+ "epoch": 1.02,
3018
+ "learning_rate": 5e-05,
3019
+ "loss": 2.0604,
3020
+ "step": 2510
3021
+ },
3022
+ {
3023
+ "epoch": 1.02,
3024
+ "learning_rate": 5e-05,
3025
+ "loss": 2.0927,
3026
+ "step": 2515
3027
+ },
3028
+ {
3029
+ "epoch": 1.02,
3030
+ "learning_rate": 5e-05,
3031
+ "loss": 2.2176,
3032
+ "step": 2520
3033
+ },
3034
+ {
3035
+ "epoch": 1.02,
3036
+ "learning_rate": 5e-05,
3037
+ "loss": 2.2972,
3038
+ "step": 2525
3039
+ },
3040
+ {
3041
+ "epoch": 1.02,
3042
+ "learning_rate": 5e-05,
3043
+ "loss": 2.1105,
3044
+ "step": 2530
3045
+ },
3046
+ {
3047
+ "epoch": 1.03,
3048
+ "learning_rate": 5e-05,
3049
+ "loss": 2.1953,
3050
+ "step": 2535
3051
+ },
3052
+ {
3053
+ "epoch": 1.03,
3054
+ "learning_rate": 5e-05,
3055
+ "loss": 2.4188,
3056
+ "step": 2540
3057
+ },
3058
+ {
3059
+ "epoch": 1.03,
3060
+ "learning_rate": 5e-05,
3061
+ "loss": 2.2246,
3062
+ "step": 2545
3063
+ },
3064
+ {
3065
+ "epoch": 1.03,
3066
+ "learning_rate": 5e-05,
3067
+ "loss": 2.3411,
3068
+ "step": 2550
3069
+ },
3070
+ {
3071
+ "epoch": 1.03,
3072
+ "learning_rate": 5e-05,
3073
+ "loss": 2.2848,
3074
+ "step": 2555
3075
+ },
3076
+ {
3077
+ "epoch": 1.04,
3078
+ "learning_rate": 5e-05,
3079
+ "loss": 2.0621,
3080
+ "step": 2560
3081
+ },
3082
+ {
3083
+ "epoch": 1.04,
3084
+ "learning_rate": 5e-05,
3085
+ "loss": 2.3601,
3086
+ "step": 2565
3087
+ },
3088
+ {
3089
+ "epoch": 1.04,
3090
+ "learning_rate": 5e-05,
3091
+ "loss": 2.0717,
3092
+ "step": 2570
3093
+ },
3094
+ {
3095
+ "epoch": 1.04,
3096
+ "learning_rate": 5e-05,
3097
+ "loss": 2.0666,
3098
+ "step": 2575
3099
+ },
3100
+ {
3101
+ "epoch": 1.04,
3102
+ "learning_rate": 5e-05,
3103
+ "loss": 2.157,
3104
+ "step": 2580
3105
+ },
3106
+ {
3107
+ "epoch": 1.05,
3108
+ "learning_rate": 5e-05,
3109
+ "loss": 2.2869,
3110
+ "step": 2585
3111
+ },
3112
+ {
3113
+ "epoch": 1.05,
3114
+ "learning_rate": 5e-05,
3115
+ "loss": 2.2177,
3116
+ "step": 2590
3117
+ },
3118
+ {
3119
+ "epoch": 1.05,
3120
+ "learning_rate": 5e-05,
3121
+ "loss": 2.2843,
3122
+ "step": 2595
3123
+ },
3124
+ {
3125
+ "epoch": 1.05,
3126
+ "learning_rate": 5e-05,
3127
+ "loss": 2.1964,
3128
+ "step": 2600
3129
+ },
3130
+ {
3131
+ "epoch": 1.05,
3132
+ "learning_rate": 5e-05,
3133
+ "loss": 2.2299,
3134
+ "step": 2605
3135
+ },
3136
+ {
3137
+ "epoch": 1.06,
3138
+ "learning_rate": 5e-05,
3139
+ "loss": 2.1429,
3140
+ "step": 2610
3141
+ },
3142
+ {
3143
+ "epoch": 1.06,
3144
+ "learning_rate": 5e-05,
3145
+ "loss": 2.1783,
3146
+ "step": 2615
3147
+ },
3148
+ {
3149
+ "epoch": 1.06,
3150
+ "learning_rate": 5e-05,
3151
+ "loss": 2.0898,
3152
+ "step": 2620
3153
+ },
3154
+ {
3155
+ "epoch": 1.06,
3156
+ "learning_rate": 5e-05,
3157
+ "loss": 2.2693,
3158
+ "step": 2625
3159
+ },
3160
+ {
3161
+ "epoch": 1.06,
3162
+ "learning_rate": 5e-05,
3163
+ "loss": 2.2216,
3164
+ "step": 2630
3165
+ },
3166
+ {
3167
+ "epoch": 1.07,
3168
+ "learning_rate": 5e-05,
3169
+ "loss": 2.1387,
3170
+ "step": 2635
3171
+ },
3172
+ {
3173
+ "epoch": 1.07,
3174
+ "learning_rate": 5e-05,
3175
+ "loss": 2.2065,
3176
+ "step": 2640
3177
+ },
3178
+ {
3179
+ "epoch": 1.07,
3180
+ "learning_rate": 5e-05,
3181
+ "loss": 2.0899,
3182
+ "step": 2645
3183
+ },
3184
+ {
3185
+ "epoch": 1.07,
3186
+ "learning_rate": 5e-05,
3187
+ "loss": 2.1705,
3188
+ "step": 2650
3189
+ },
3190
+ {
3191
+ "epoch": 1.07,
3192
+ "learning_rate": 5e-05,
3193
+ "loss": 2.1863,
3194
+ "step": 2655
3195
+ },
3196
+ {
3197
+ "epoch": 1.08,
3198
+ "learning_rate": 5e-05,
3199
+ "loss": 2.2563,
3200
+ "step": 2660
3201
+ },
3202
+ {
3203
+ "epoch": 1.08,
3204
+ "learning_rate": 5e-05,
3205
+ "loss": 2.2669,
3206
+ "step": 2665
3207
+ },
3208
+ {
3209
+ "epoch": 1.08,
3210
+ "learning_rate": 5e-05,
3211
+ "loss": 2.2752,
3212
+ "step": 2670
3213
+ },
3214
+ {
3215
+ "epoch": 1.08,
3216
+ "learning_rate": 5e-05,
3217
+ "loss": 2.3229,
3218
+ "step": 2675
3219
+ },
3220
+ {
3221
+ "epoch": 1.08,
3222
+ "learning_rate": 5e-05,
3223
+ "loss": 2.1955,
3224
+ "step": 2680
3225
+ },
3226
+ {
3227
+ "epoch": 1.09,
3228
+ "learning_rate": 5e-05,
3229
+ "loss": 2.1868,
3230
+ "step": 2685
3231
+ },
3232
+ {
3233
+ "epoch": 1.09,
3234
+ "learning_rate": 5e-05,
3235
+ "loss": 2.3266,
3236
+ "step": 2690
3237
+ },
3238
+ {
3239
+ "epoch": 1.09,
3240
+ "learning_rate": 5e-05,
3241
+ "loss": 2.1649,
3242
+ "step": 2695
3243
+ },
3244
+ {
3245
+ "epoch": 1.09,
3246
+ "learning_rate": 5e-05,
3247
+ "loss": 2.1767,
3248
+ "step": 2700
3249
+ },
3250
+ {
3251
+ "epoch": 1.09,
3252
+ "learning_rate": 5e-05,
3253
+ "loss": 2.2341,
3254
+ "step": 2705
3255
+ },
3256
+ {
3257
+ "epoch": 1.1,
3258
+ "learning_rate": 5e-05,
3259
+ "loss": 2.2082,
3260
+ "step": 2710
3261
+ },
3262
+ {
3263
+ "epoch": 1.1,
3264
+ "learning_rate": 5e-05,
3265
+ "loss": 2.1698,
3266
+ "step": 2715
3267
+ },
3268
+ {
3269
+ "epoch": 1.1,
3270
+ "learning_rate": 5e-05,
3271
+ "loss": 2.1964,
3272
+ "step": 2720
3273
+ },
3274
+ {
3275
+ "epoch": 1.1,
3276
+ "learning_rate": 5e-05,
3277
+ "loss": 2.2899,
3278
+ "step": 2725
3279
+ },
3280
+ {
3281
+ "epoch": 1.1,
3282
+ "learning_rate": 5e-05,
3283
+ "loss": 2.2172,
3284
+ "step": 2730
3285
+ },
3286
+ {
3287
+ "epoch": 1.11,
3288
+ "learning_rate": 5e-05,
3289
+ "loss": 2.1917,
3290
+ "step": 2735
3291
+ },
3292
+ {
3293
+ "epoch": 1.11,
3294
+ "learning_rate": 5e-05,
3295
+ "loss": 2.2461,
3296
+ "step": 2740
3297
+ },
3298
+ {
3299
+ "epoch": 1.11,
3300
+ "learning_rate": 5e-05,
3301
+ "loss": 2.143,
3302
+ "step": 2745
3303
+ },
3304
+ {
3305
+ "epoch": 1.11,
3306
+ "learning_rate": 5e-05,
3307
+ "loss": 2.1732,
3308
+ "step": 2750
3309
+ },
3310
+ {
3311
+ "epoch": 1.11,
3312
+ "learning_rate": 5e-05,
3313
+ "loss": 2.2312,
3314
+ "step": 2755
3315
+ },
3316
+ {
3317
+ "epoch": 1.12,
3318
+ "learning_rate": 5e-05,
3319
+ "loss": 2.1724,
3320
+ "step": 2760
3321
+ },
3322
+ {
3323
+ "epoch": 1.12,
3324
+ "learning_rate": 5e-05,
3325
+ "loss": 2.1024,
3326
+ "step": 2765
3327
+ },
3328
+ {
3329
+ "epoch": 1.12,
3330
+ "learning_rate": 5e-05,
3331
+ "loss": 2.234,
3332
+ "step": 2770
3333
+ },
3334
+ {
3335
+ "epoch": 1.12,
3336
+ "learning_rate": 5e-05,
3337
+ "loss": 2.2232,
3338
+ "step": 2775
3339
+ },
3340
+ {
3341
+ "epoch": 1.13,
3342
+ "learning_rate": 5e-05,
3343
+ "loss": 2.1624,
3344
+ "step": 2780
3345
+ },
3346
+ {
3347
+ "epoch": 1.13,
3348
+ "learning_rate": 5e-05,
3349
+ "loss": 2.1253,
3350
+ "step": 2785
3351
+ },
3352
+ {
3353
+ "epoch": 1.13,
3354
+ "learning_rate": 5e-05,
3355
+ "loss": 2.2269,
3356
+ "step": 2790
3357
+ },
3358
+ {
3359
+ "epoch": 1.13,
3360
+ "learning_rate": 5e-05,
3361
+ "loss": 2.3,
3362
+ "step": 2795
3363
+ },
3364
+ {
3365
+ "epoch": 1.13,
3366
+ "learning_rate": 5e-05,
3367
+ "loss": 2.2228,
3368
+ "step": 2800
3369
+ },
3370
+ {
3371
+ "epoch": 1.14,
3372
+ "learning_rate": 5e-05,
3373
+ "loss": 2.2687,
3374
+ "step": 2805
3375
+ },
3376
+ {
3377
+ "epoch": 1.14,
3378
+ "learning_rate": 5e-05,
3379
+ "loss": 2.0817,
3380
+ "step": 2810
3381
+ },
3382
+ {
3383
+ "epoch": 1.14,
3384
+ "learning_rate": 5e-05,
3385
+ "loss": 2.3083,
3386
+ "step": 2815
3387
+ },
3388
+ {
3389
+ "epoch": 1.14,
3390
+ "learning_rate": 5e-05,
3391
+ "loss": 2.1453,
3392
+ "step": 2820
3393
+ },
3394
+ {
3395
+ "epoch": 1.14,
3396
+ "learning_rate": 5e-05,
3397
+ "loss": 2.229,
3398
+ "step": 2825
3399
+ },
3400
+ {
3401
+ "epoch": 1.15,
3402
+ "learning_rate": 5e-05,
3403
+ "loss": 2.0037,
3404
+ "step": 2830
3405
+ },
3406
+ {
3407
+ "epoch": 1.15,
3408
+ "learning_rate": 5e-05,
3409
+ "loss": 2.2472,
3410
+ "step": 2835
3411
+ },
3412
+ {
3413
+ "epoch": 1.15,
3414
+ "learning_rate": 5e-05,
3415
+ "loss": 2.2924,
3416
+ "step": 2840
3417
+ },
3418
+ {
3419
+ "epoch": 1.15,
3420
+ "learning_rate": 5e-05,
3421
+ "loss": 2.3999,
3422
+ "step": 2845
3423
+ },
3424
+ {
3425
+ "epoch": 1.15,
3426
+ "learning_rate": 5e-05,
3427
+ "loss": 2.2672,
3428
+ "step": 2850
3429
+ },
3430
+ {
3431
+ "epoch": 1.16,
3432
+ "learning_rate": 5e-05,
3433
+ "loss": 2.2466,
3434
+ "step": 2855
3435
+ },
3436
+ {
3437
+ "epoch": 1.16,
3438
+ "learning_rate": 5e-05,
3439
+ "loss": 2.3562,
3440
+ "step": 2860
3441
+ },
3442
+ {
3443
+ "epoch": 1.16,
3444
+ "learning_rate": 5e-05,
3445
+ "loss": 2.3754,
3446
+ "step": 2865
3447
+ },
3448
+ {
3449
+ "epoch": 1.16,
3450
+ "learning_rate": 5e-05,
3451
+ "loss": 2.1568,
3452
+ "step": 2870
3453
+ },
3454
+ {
3455
+ "epoch": 1.16,
3456
+ "learning_rate": 5e-05,
3457
+ "loss": 2.2053,
3458
+ "step": 2875
3459
+ },
3460
+ {
3461
+ "epoch": 1.17,
3462
+ "learning_rate": 5e-05,
3463
+ "loss": 2.2557,
3464
+ "step": 2880
3465
+ },
3466
+ {
3467
+ "epoch": 1.17,
3468
+ "learning_rate": 5e-05,
3469
+ "loss": 2.2292,
3470
+ "step": 2885
3471
+ },
3472
+ {
3473
+ "epoch": 1.17,
3474
+ "learning_rate": 5e-05,
3475
+ "loss": 2.1612,
3476
+ "step": 2890
3477
+ },
3478
+ {
3479
+ "epoch": 1.17,
3480
+ "learning_rate": 5e-05,
3481
+ "loss": 2.1222,
3482
+ "step": 2895
3483
+ },
3484
+ {
3485
+ "epoch": 1.17,
3486
+ "learning_rate": 5e-05,
3487
+ "loss": 2.3077,
3488
+ "step": 2900
3489
+ },
3490
+ {
3491
+ "epoch": 1.18,
3492
+ "learning_rate": 5e-05,
3493
+ "loss": 2.2526,
3494
+ "step": 2905
3495
+ },
3496
+ {
3497
+ "epoch": 1.18,
3498
+ "learning_rate": 5e-05,
3499
+ "loss": 2.3626,
3500
+ "step": 2910
3501
+ },
3502
+ {
3503
+ "epoch": 1.18,
3504
+ "learning_rate": 5e-05,
3505
+ "loss": 2.2218,
3506
+ "step": 2915
3507
+ },
3508
+ {
3509
+ "epoch": 1.18,
3510
+ "learning_rate": 5e-05,
3511
+ "loss": 2.2083,
3512
+ "step": 2920
3513
+ },
3514
+ {
3515
+ "epoch": 1.18,
3516
+ "learning_rate": 5e-05,
3517
+ "loss": 2.156,
3518
+ "step": 2925
3519
+ },
3520
+ {
3521
+ "epoch": 1.19,
3522
+ "learning_rate": 5e-05,
3523
+ "loss": 2.2767,
3524
+ "step": 2930
3525
+ },
3526
+ {
3527
+ "epoch": 1.19,
3528
+ "learning_rate": 5e-05,
3529
+ "loss": 2.289,
3530
+ "step": 2935
3531
+ },
3532
+ {
3533
+ "epoch": 1.19,
3534
+ "learning_rate": 5e-05,
3535
+ "loss": 2.2848,
3536
+ "step": 2940
3537
+ },
3538
+ {
3539
+ "epoch": 1.19,
3540
+ "learning_rate": 5e-05,
3541
+ "loss": 2.276,
3542
+ "step": 2945
3543
+ },
3544
+ {
3545
+ "epoch": 1.19,
3546
+ "learning_rate": 5e-05,
3547
+ "loss": 2.2919,
3548
+ "step": 2950
3549
+ },
3550
+ {
3551
+ "epoch": 1.2,
3552
+ "learning_rate": 5e-05,
3553
+ "loss": 2.2985,
3554
+ "step": 2955
3555
+ },
3556
+ {
3557
+ "epoch": 1.2,
3558
+ "learning_rate": 5e-05,
3559
+ "loss": 2.2449,
3560
+ "step": 2960
3561
+ },
3562
+ {
3563
+ "epoch": 1.2,
3564
+ "learning_rate": 5e-05,
3565
+ "loss": 2.2573,
3566
+ "step": 2965
3567
+ },
3568
+ {
3569
+ "epoch": 1.2,
3570
+ "learning_rate": 5e-05,
3571
+ "loss": 2.2188,
3572
+ "step": 2970
3573
+ },
3574
+ {
3575
+ "epoch": 1.2,
3576
+ "learning_rate": 5e-05,
3577
+ "loss": 2.3185,
3578
+ "step": 2975
3579
+ },
3580
+ {
3581
+ "epoch": 1.21,
3582
+ "learning_rate": 5e-05,
3583
+ "loss": 2.1787,
3584
+ "step": 2980
3585
+ },
3586
+ {
3587
+ "epoch": 1.21,
3588
+ "learning_rate": 5e-05,
3589
+ "loss": 2.311,
3590
+ "step": 2985
3591
+ },
3592
+ {
3593
+ "epoch": 1.21,
3594
+ "learning_rate": 5e-05,
3595
+ "loss": 2.2696,
3596
+ "step": 2990
3597
+ },
3598
+ {
3599
+ "epoch": 1.21,
3600
+ "learning_rate": 5e-05,
3601
+ "loss": 2.1472,
3602
+ "step": 2995
3603
+ },
3604
+ {
3605
+ "epoch": 1.21,
3606
+ "learning_rate": 5e-05,
3607
+ "loss": 2.371,
3608
+ "step": 3000
3609
+ },
3610
+ {
3611
+ "epoch": 1.22,
3612
+ "learning_rate": 5e-05,
3613
+ "loss": 2.2385,
3614
+ "step": 3005
3615
+ },
3616
+ {
3617
+ "epoch": 1.22,
3618
+ "learning_rate": 5e-05,
3619
+ "loss": 2.213,
3620
+ "step": 3010
3621
+ },
3622
+ {
3623
+ "epoch": 1.22,
3624
+ "learning_rate": 5e-05,
3625
+ "loss": 2.2276,
3626
+ "step": 3015
3627
+ },
3628
+ {
3629
+ "epoch": 1.22,
3630
+ "learning_rate": 5e-05,
3631
+ "loss": 2.3147,
3632
+ "step": 3020
3633
+ },
3634
+ {
3635
+ "epoch": 1.22,
3636
+ "learning_rate": 5e-05,
3637
+ "loss": 2.2818,
3638
+ "step": 3025
3639
+ },
3640
+ {
3641
+ "epoch": 1.23,
3642
+ "learning_rate": 5e-05,
3643
+ "loss": 2.3763,
3644
+ "step": 3030
3645
+ },
3646
+ {
3647
+ "epoch": 1.23,
3648
+ "learning_rate": 5e-05,
3649
+ "loss": 2.2653,
3650
+ "step": 3035
3651
+ },
3652
+ {
3653
+ "epoch": 1.23,
3654
+ "learning_rate": 5e-05,
3655
+ "loss": 2.1061,
3656
+ "step": 3040
3657
+ },
3658
+ {
3659
+ "epoch": 1.23,
3660
+ "learning_rate": 5e-05,
3661
+ "loss": 2.1532,
3662
+ "step": 3045
3663
+ },
3664
+ {
3665
+ "epoch": 1.23,
3666
+ "learning_rate": 5e-05,
3667
+ "loss": 2.2831,
3668
+ "step": 3050
3669
+ },
3670
+ {
3671
+ "epoch": 1.24,
3672
+ "learning_rate": 5e-05,
3673
+ "loss": 2.284,
3674
+ "step": 3055
3675
+ },
3676
+ {
3677
+ "epoch": 1.24,
3678
+ "learning_rate": 5e-05,
3679
+ "loss": 2.316,
3680
+ "step": 3060
3681
+ },
3682
+ {
3683
+ "epoch": 1.24,
3684
+ "learning_rate": 5e-05,
3685
+ "loss": 2.2093,
3686
+ "step": 3065
3687
+ },
3688
+ {
3689
+ "epoch": 1.24,
3690
+ "learning_rate": 5e-05,
3691
+ "loss": 2.3092,
3692
+ "step": 3070
3693
+ },
3694
+ {
3695
+ "epoch": 1.24,
3696
+ "learning_rate": 5e-05,
3697
+ "loss": 2.121,
3698
+ "step": 3075
3699
+ },
3700
+ {
3701
+ "epoch": 1.25,
3702
+ "learning_rate": 5e-05,
3703
+ "loss": 2.1213,
3704
+ "step": 3080
3705
+ },
3706
+ {
3707
+ "epoch": 1.25,
3708
+ "learning_rate": 5e-05,
3709
+ "loss": 2.2853,
3710
+ "step": 3085
3711
+ },
3712
+ {
3713
+ "epoch": 1.25,
3714
+ "learning_rate": 5e-05,
3715
+ "loss": 2.2103,
3716
+ "step": 3090
3717
+ },
3718
+ {
3719
+ "epoch": 1.25,
3720
+ "learning_rate": 5e-05,
3721
+ "loss": 2.1558,
3722
+ "step": 3095
3723
+ },
3724
+ {
3725
+ "epoch": 1.25,
3726
+ "learning_rate": 5e-05,
3727
+ "loss": 2.3642,
3728
+ "step": 3100
3729
+ },
3730
+ {
3731
+ "epoch": 1.26,
3732
+ "learning_rate": 5e-05,
3733
+ "loss": 2.1975,
3734
+ "step": 3105
3735
+ },
3736
+ {
3737
+ "epoch": 1.26,
3738
+ "learning_rate": 5e-05,
3739
+ "loss": 2.3263,
3740
+ "step": 3110
3741
+ },
3742
+ {
3743
+ "epoch": 1.26,
3744
+ "learning_rate": 5e-05,
3745
+ "loss": 2.2045,
3746
+ "step": 3115
3747
+ },
3748
+ {
3749
+ "epoch": 1.26,
3750
+ "learning_rate": 5e-05,
3751
+ "loss": 2.2657,
3752
+ "step": 3120
3753
+ },
3754
+ {
3755
+ "epoch": 1.26,
3756
+ "learning_rate": 5e-05,
3757
+ "loss": 2.1824,
3758
+ "step": 3125
3759
+ },
3760
+ {
3761
+ "epoch": 1.27,
3762
+ "learning_rate": 5e-05,
3763
+ "loss": 2.2344,
3764
+ "step": 3130
3765
+ },
3766
+ {
3767
+ "epoch": 1.27,
3768
+ "learning_rate": 5e-05,
3769
+ "loss": 2.3884,
3770
+ "step": 3135
3771
+ },
3772
+ {
3773
+ "epoch": 1.27,
3774
+ "learning_rate": 5e-05,
3775
+ "loss": 2.1757,
3776
+ "step": 3140
3777
+ },
3778
+ {
3779
+ "epoch": 1.27,
3780
+ "learning_rate": 5e-05,
3781
+ "loss": 2.2789,
3782
+ "step": 3145
3783
+ },
3784
+ {
3785
+ "epoch": 1.27,
3786
+ "learning_rate": 5e-05,
3787
+ "loss": 2.3038,
3788
+ "step": 3150
3789
+ },
3790
+ {
3791
+ "epoch": 1.28,
3792
+ "learning_rate": 5e-05,
3793
+ "loss": 2.2446,
3794
+ "step": 3155
3795
+ },
3796
+ {
3797
+ "epoch": 1.28,
3798
+ "learning_rate": 5e-05,
3799
+ "loss": 2.1975,
3800
+ "step": 3160
3801
+ },
3802
+ {
3803
+ "epoch": 1.28,
3804
+ "learning_rate": 5e-05,
3805
+ "loss": 2.4234,
3806
+ "step": 3165
3807
+ },
3808
+ {
3809
+ "epoch": 1.28,
3810
+ "learning_rate": 5e-05,
3811
+ "loss": 2.2307,
3812
+ "step": 3170
3813
+ },
3814
+ {
3815
+ "epoch": 1.28,
3816
+ "learning_rate": 5e-05,
3817
+ "loss": 2.1857,
3818
+ "step": 3175
3819
+ },
3820
+ {
3821
+ "epoch": 1.29,
3822
+ "learning_rate": 5e-05,
3823
+ "loss": 2.2006,
3824
+ "step": 3180
3825
+ },
3826
+ {
3827
+ "epoch": 1.29,
3828
+ "learning_rate": 5e-05,
3829
+ "loss": 2.2475,
3830
+ "step": 3185
3831
+ },
3832
+ {
3833
+ "epoch": 1.29,
3834
+ "learning_rate": 5e-05,
3835
+ "loss": 2.3465,
3836
+ "step": 3190
3837
+ },
3838
+ {
3839
+ "epoch": 1.29,
3840
+ "learning_rate": 5e-05,
3841
+ "loss": 2.1186,
3842
+ "step": 3195
3843
+ },
3844
+ {
3845
+ "epoch": 1.29,
3846
+ "learning_rate": 5e-05,
3847
+ "loss": 2.2803,
3848
+ "step": 3200
3849
+ }
3850
+ ],
3851
+ "max_steps": 4942,
3852
+ "num_train_epochs": 2,
3853
+ "total_flos": 3.8026776806424576e+17,
3854
+ "trial_name": null,
3855
+ "trial_params": null
3856
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09f5d04fb3754a0efdcfac1f31e2455f243c3bf11081d2bb3f0513c22a30ddef
3
+ size 4271
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import math
14
+ import os
15
+ import re
16
+ from collections import OrderedDict
17
+
18
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
19
+ # DeepSpeed data structures it has to be available in the current python environment.
20
+ import deepspeed
21
+ from deepspeed.utils import logger
22
+ from deepspeed.checkpoint.constants import (DS_VERSION,
23
+ OPTIMIZER_STATE_DICT,
24
+ PARAM_SHAPES,
25
+ SINGLE_PARTITION_OF_FP32_GROUPS,
26
+ FP32_FLAT_GROUPS,
27
+ ZERO_STAGE,
28
+ PARTITION_COUNT,
29
+ PARAM_SHAPES,
30
+ BUFFER_NAMES)
31
+
32
+ debug = 0
33
+
34
+ # load to cpu
35
+ device = torch.device('cpu')
36
+
37
+
38
+ def atoi(text):
39
+ return int(text) if text.isdigit() else text
40
+
41
+
42
+ def natural_keys(text):
43
+ '''
44
+ alist.sort(key=natural_keys) sorts in human order
45
+ http://nedbatchelder.com/blog/200712/human_sorting.html
46
+ (See Toothy's implementation in the comments)
47
+ '''
48
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
49
+
50
+
51
+ def get_model_state_file(checkpoint_dir, zero_stage):
52
+ if not os.path.isdir(checkpoint_dir):
53
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
54
+
55
+ # there should be only one file
56
+ if zero_stage == 2:
57
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
58
+ elif zero_stage == 3:
59
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
60
+
61
+ if not os.path.exists(file):
62
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
63
+
64
+ return file
65
+
66
+
67
+ def get_optim_files(checkpoint_dir):
68
+ # XXX: need to test that this simple glob rule works for multi-node setup too
69
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
70
+ "*_optim_states.pt")),
71
+ key=natural_keys)
72
+
73
+ if len(optim_files) == 0:
74
+ raise FileNotFoundError(
75
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
76
+
77
+ return optim_files
78
+
79
+
80
+ def parse_model_state(file):
81
+ state_dict = torch.load(file, map_location=device)
82
+
83
+ if BUFFER_NAMES not in state_dict:
84
+ raise ValueError(f"{file} is not a model state checkpoint")
85
+ buffer_names = state_dict[BUFFER_NAMES]
86
+ if debug:
87
+ print("Found buffers:", buffer_names)
88
+
89
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
90
+ buffers = {
91
+ k: v.float()
92
+ for k,
93
+ v in state_dict["module"].items() if k in buffer_names
94
+ }
95
+ param_shapes = state_dict[PARAM_SHAPES]
96
+
97
+ ds_version = state_dict.get(DS_VERSION, None)
98
+
99
+ return buffers, param_shapes, ds_version
100
+
101
+
102
+ def parse_optim_states(files, ds_checkpoint_dir):
103
+
104
+ total_files = len(files)
105
+ state_dicts = []
106
+ for f in files:
107
+ state_dicts.append(torch.load(f, map_location=device))
108
+
109
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
110
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
111
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
112
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
113
+
114
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
115
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
116
+ # use the max of the partition_count to get the dp world_size.
117
+
118
+ if type(world_size) is list:
119
+ world_size = max(world_size)
120
+
121
+ if world_size != total_files:
122
+ raise ValueError(
123
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
124
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
125
+ )
126
+
127
+ # the groups are named differently in each stage
128
+ if zero_stage == 2:
129
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
130
+ elif zero_stage == 3:
131
+ fp32_groups_key = FP32_FLAT_GROUPS
132
+ else:
133
+ raise ValueError(f"unknown zero stage {zero_stage}")
134
+
135
+ if zero_stage == 2:
136
+ fp32_flat_groups = [
137
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
138
+ for i in range(len(state_dicts))
139
+ ]
140
+ elif zero_stage == 3:
141
+ # if there is more than one param group, there will be multiple flattened tensors - one
142
+ # flattened tensor per group - for simplicity merge them into a single tensor
143
+ #
144
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
145
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
146
+
147
+ fp32_flat_groups = [
148
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
149
+ 0) for i in range(len(state_dicts))
150
+ ]
151
+
152
+ return zero_stage, world_size, fp32_flat_groups
153
+
154
+
155
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
156
+ """
157
+ Returns fp32 state_dict reconstructed from ds checkpoint
158
+
159
+ Args:
160
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
161
+
162
+ """
163
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
164
+
165
+ optim_files = get_optim_files(ds_checkpoint_dir)
166
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
167
+ print(
168
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
169
+
170
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
171
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
172
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
173
+
174
+ if zero_stage == 2:
175
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
176
+ param_shapes,
177
+ fp32_flat_groups,
178
+ buffers)
179
+ elif zero_stage == 3:
180
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
181
+ param_shapes,
182
+ fp32_flat_groups,
183
+ buffers)
184
+
185
+
186
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
187
+ param_shapes,
188
+ fp32_flat_groups,
189
+ buffers):
190
+
191
+ # Reconstruction protocol:
192
+ #
193
+ # XXX: document this
194
+
195
+ if debug:
196
+ for i in range(world_size):
197
+ for j in range(len(fp32_flat_groups[0])):
198
+ print(
199
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
200
+
201
+ # XXX: memory usage doubles here (zero2)
202
+ num_param_groups = len(fp32_flat_groups[0])
203
+ merged_single_partition_of_fp32_groups = []
204
+ for i in range(num_param_groups):
205
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
206
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
207
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
208
+ avail_numel = sum([
209
+ full_single_fp32_vector.numel()
210
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
211
+ ])
212
+
213
+ if debug:
214
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
215
+ wanted_numel = sum(
216
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
217
+ # not asserting if there is a mismatch due to possible padding
218
+ print(f"Have {avail_numel} numels to process.")
219
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
220
+
221
+ state_dict = OrderedDict()
222
+
223
+ # buffers
224
+ state_dict.update(buffers)
225
+ if debug:
226
+ print(f"added {len(buffers)} buffers")
227
+
228
+ # params
229
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
230
+ # out-of-core computing solution
231
+ total_numel = 0
232
+ total_params = 0
233
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
234
+ offset = 0
235
+ avail_numel = full_single_fp32_vector.numel()
236
+ for name, shape in shapes.items():
237
+
238
+ unpartitioned_numel = shape.numel()
239
+ total_numel += unpartitioned_numel
240
+ total_params += 1
241
+
242
+ if debug:
243
+ print(
244
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
245
+ )
246
+ state_dict[name] = full_single_fp32_vector.narrow(
247
+ 0,
248
+ offset,
249
+ unpartitioned_numel).view(shape)
250
+ offset += unpartitioned_numel
251
+
252
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
253
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
254
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
255
+ # live optimizer object, so we are checking that the numbers are within the right range
256
+ align_to = 2 * world_size
257
+
258
+ def zero2_align(x):
259
+ return align_to * math.ceil(x / align_to)
260
+
261
+ if debug:
262
+ print(f"original offset={offset}, avail_numel={avail_numel}")
263
+
264
+ offset = zero2_align(offset)
265
+ avail_numel = zero2_align(avail_numel)
266
+
267
+ if debug:
268
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
269
+
270
+ # Sanity check
271
+ if offset != avail_numel:
272
+ raise ValueError(
273
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
274
+
275
+ print(
276
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
277
+ )
278
+
279
+ return state_dict
280
+
281
+
282
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
283
+ remainder = unpartitioned_numel % world_size
284
+ padding_numel = (world_size - remainder) if remainder else 0
285
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
286
+ return partitioned_numel, padding_numel
287
+
288
+
289
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
290
+ param_shapes,
291
+ fp32_flat_groups,
292
+ buffers):
293
+
294
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
295
+ # param, re-consolidating each param, while dealing with padding if any
296
+
297
+ avail_numel = fp32_flat_groups[0].numel() * world_size
298
+ # merge list of dicts, preserving order
299
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
300
+
301
+ if debug:
302
+ for i in range(world_size):
303
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
304
+
305
+ wanted_params = len(param_shapes)
306
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
307
+ # not asserting if there is a mismatch due to possible padding
308
+ print(f"Have {avail_numel} numels to process.")
309
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
310
+
311
+ state_dict = OrderedDict()
312
+
313
+ # buffers
314
+ state_dict.update(buffers)
315
+ if debug:
316
+ print(f"added {len(buffers)} buffers")
317
+
318
+ # params
319
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
320
+ # out-of-core computing solution
321
+ offset = 0
322
+ total_numel = 0
323
+ total_params = 0
324
+ for name, shape in param_shapes.items():
325
+
326
+ unpartitioned_numel = shape.numel()
327
+ total_numel += unpartitioned_numel
328
+ total_params += 1
329
+
330
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
331
+
332
+ if debug:
333
+ print(
334
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
335
+ )
336
+
337
+ # XXX: memory usage doubles here
338
+ state_dict[name] = torch.cat(
339
+ tuple(fp32_flat_groups[i].narrow(0,
340
+ offset,
341
+ partitioned_numel)
342
+ for i in range(world_size)),
343
+ 0).narrow(0,
344
+ 0,
345
+ unpartitioned_numel).view(shape)
346
+ offset += partitioned_numel
347
+
348
+ offset *= world_size
349
+
350
+ # Sanity check
351
+ if offset != avail_numel:
352
+ raise ValueError(
353
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
354
+
355
+ print(
356
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
357
+ )
358
+
359
+ return state_dict
360
+
361
+
362
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
363
+ """
364
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
365
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
366
+ via a model hub.
367
+
368
+ Args:
369
+ - ``checkpoint_dir``: path to the desired checkpoint folder
370
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
371
+
372
+ Returns:
373
+ - pytorch ``state_dict``
374
+
375
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
376
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
377
+ the checkpoint.
378
+
379
+ A typical usage might be ::
380
+
381
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
382
+ # do the training and checkpoint saving
383
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
384
+ model = model.cpu() # move to cpu
385
+ model.load_state_dict(state_dict)
386
+ # submit to model hub or save the model to share with others
387
+
388
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
389
+ application. i.e. you will need to re-initialize the deepspeed engine, since
390
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
391
+
392
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
393
+
394
+ """
395
+ if tag is None:
396
+ latest_path = os.path.join(checkpoint_dir, 'latest')
397
+ if os.path.isfile(latest_path):
398
+ with open(latest_path, 'r') as fd:
399
+ tag = fd.read().strip()
400
+ else:
401
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
402
+
403
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
404
+
405
+ if not os.path.isdir(ds_checkpoint_dir):
406
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
407
+
408
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
409
+
410
+
411
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
412
+ """
413
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
414
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
415
+
416
+ Args:
417
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
418
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
419
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
420
+ """
421
+
422
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
423
+ print(f"Saving fp32 state dict to {output_file}")
424
+ torch.save(state_dict, output_file)
425
+
426
+
427
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
428
+ """
429
+ 1. Put the provided model to cpu
430
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
431
+ 3. Load it into the provided model
432
+
433
+ Args:
434
+ - ``model``: the model object to update
435
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
436
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
437
+
438
+ Returns:
439
+ - ``model`: modified model
440
+
441
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
442
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
443
+ conveniently placed for you in the checkpoint folder.
444
+
445
+ A typical usage might be ::
446
+
447
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
448
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
449
+ # submit to model hub or save the model to share with others
450
+
451
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
452
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
453
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
454
+
455
+ """
456
+ logger.info(f"Extracting fp32 weights")
457
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
458
+
459
+ logger.info(f"Overwriting model with fp32 weights")
460
+ model = model.cpu()
461
+ model.load_state_dict(state_dict, strict=False)
462
+
463
+ return model
464
+
465
+
466
+ if __name__ == "__main__":
467
+
468
+ parser = argparse.ArgumentParser()
469
+ parser.add_argument(
470
+ "checkpoint_dir",
471
+ type=str,
472
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
473
+ parser.add_argument(
474
+ "output_file",
475
+ type=str,
476
+ help=
477
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
478
+ )
479
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
480
+ args = parser.parse_args()
481
+
482
+ debug = args.debug
483
+
484
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)