load model from drive and convert
Browse files- .gitignore +1 -0
- README.md +51 -0
- config.json +34 -0
- latest +1 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- trainer_state.json +3856 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +484 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: mGPT-gpt-pierre_DS-msgs-df_Ep-2_Bs-4
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# mGPT-gpt-pierre_DS-msgs-df_Ep-2_Bs-4
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [sberbank-ai/mGPT](https://huggingface.co/sberbank-ai/mGPT) on the None dataset.
|
16 |
+
|
17 |
+
## Model description
|
18 |
+
|
19 |
+
More information needed
|
20 |
+
|
21 |
+
## Intended uses & limitations
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Training and evaluation data
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training procedure
|
30 |
+
|
31 |
+
### Training hyperparameters
|
32 |
+
|
33 |
+
The following hyperparameters were used during training:
|
34 |
+
- learning_rate: 5e-05
|
35 |
+
- train_batch_size: 4
|
36 |
+
- eval_batch_size: 4
|
37 |
+
- seed: 42
|
38 |
+
- distributed_type: multi-GPU
|
39 |
+
- gradient_accumulation_steps: 8
|
40 |
+
- total_train_batch_size: 32
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: cosine_with_restarts
|
43 |
+
- lr_scheduler_warmup_ratio: 0.05
|
44 |
+
- num_epochs: 2
|
45 |
+
|
46 |
+
### Framework versions
|
47 |
+
|
48 |
+
- Transformers 4.18.0
|
49 |
+
- Pytorch 1.11.0+cu113
|
50 |
+
- Datasets 2.1.0
|
51 |
+
- Tokenizers 0.12.1
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sberbank-ai/mGPT",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2LMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"bos_token_id": 50256,
|
9 |
+
"embd_pdrop": 0.1,
|
10 |
+
"eos_token_id": 50256,
|
11 |
+
"gradient_checkpointing": false,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"layer_norm_epsilon": 1e-05,
|
14 |
+
"model_type": "gpt2",
|
15 |
+
"n_ctx": 2048,
|
16 |
+
"n_embd": 2048,
|
17 |
+
"n_head": 16,
|
18 |
+
"n_inner": null,
|
19 |
+
"n_layer": 24,
|
20 |
+
"n_positions": 2048,
|
21 |
+
"reorder_and_upcast_attn": false,
|
22 |
+
"resid_pdrop": 0.1,
|
23 |
+
"scale_attn_by_inverse_layer_idx": false,
|
24 |
+
"scale_attn_weights": true,
|
25 |
+
"summary_activation": null,
|
26 |
+
"summary_first_dropout": 0.1,
|
27 |
+
"summary_proj_to_labels": true,
|
28 |
+
"summary_type": "cls_index",
|
29 |
+
"summary_use_proj": true,
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.18.0",
|
32 |
+
"use_cache": false,
|
33 |
+
"vocab_size": 100000
|
34 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step3202
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d6db98cdd92c575f5bc1c7aa998e2491670c6a70c1663a8f33b4827fc72a1ee
|
3 |
+
size 6073088630
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "sberbank-ai/mGPT", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}
|
trainer_state.json
ADDED
@@ -0,0 +1,3856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.29535224801497,
|
5 |
+
"global_step": 3201,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 1.4595617233228861e-05,
|
13 |
+
"loss": 5.7174,
|
14 |
+
"step": 5
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 2.0881607426192572e-05,
|
19 |
+
"loss": 4.073,
|
20 |
+
"step": 10
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 2.4558675968977286e-05,
|
25 |
+
"loss": 3.8184,
|
26 |
+
"step": 15
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.01,
|
30 |
+
"learning_rate": 2.7167597619156276e-05,
|
31 |
+
"loss": 3.485,
|
32 |
+
"step": 20
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.01,
|
36 |
+
"learning_rate": 2.9191234466457723e-05,
|
37 |
+
"loss": 3.4225,
|
38 |
+
"step": 25
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.01,
|
42 |
+
"learning_rate": 3.0844666161941e-05,
|
43 |
+
"loss": 3.4162,
|
44 |
+
"step": 30
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.01,
|
48 |
+
"learning_rate": 3.2242622741451356e-05,
|
49 |
+
"loss": 3.1498,
|
50 |
+
"step": 35
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.02,
|
54 |
+
"learning_rate": 3.345358781211998e-05,
|
55 |
+
"loss": 3.1313,
|
56 |
+
"step": 40
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.02,
|
60 |
+
"learning_rate": 3.4521734704725705e-05,
|
61 |
+
"loss": 3.1651,
|
62 |
+
"step": 45
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.02,
|
66 |
+
"learning_rate": 3.547722465942143e-05,
|
67 |
+
"loss": 3.0759,
|
68 |
+
"step": 50
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.02,
|
72 |
+
"learning_rate": 3.6341570461211475e-05,
|
73 |
+
"loss": 3.2154,
|
74 |
+
"step": 55
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.02,
|
78 |
+
"learning_rate": 3.71306563549047e-05,
|
79 |
+
"loss": 3.0505,
|
80 |
+
"step": 60
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.03,
|
84 |
+
"learning_rate": 3.785654501111715e-05,
|
85 |
+
"loss": 3.0904,
|
86 |
+
"step": 65
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.03,
|
90 |
+
"learning_rate": 3.8528612934415064e-05,
|
91 |
+
"loss": 3.1834,
|
92 |
+
"step": 70
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.03,
|
96 |
+
"learning_rate": 3.9154293202206144e-05,
|
97 |
+
"loss": 3.1904,
|
98 |
+
"step": 75
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.03,
|
102 |
+
"learning_rate": 3.973957800508369e-05,
|
103 |
+
"loss": 3.1185,
|
104 |
+
"step": 80
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.03,
|
108 |
+
"learning_rate": 4.028936856743207e-05,
|
109 |
+
"loss": 2.8454,
|
110 |
+
"step": 85
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.04,
|
114 |
+
"learning_rate": 4.080772489768941e-05,
|
115 |
+
"loss": 3.1069,
|
116 |
+
"step": 90
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.04,
|
120 |
+
"learning_rate": 4.1298047923155946e-05,
|
121 |
+
"loss": 3.1566,
|
122 |
+
"step": 95
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.04,
|
126 |
+
"learning_rate": 4.1763214852385144e-05,
|
127 |
+
"loss": 2.9029,
|
128 |
+
"step": 100
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.04,
|
132 |
+
"learning_rate": 4.220568147719977e-05,
|
133 |
+
"loss": 3.0556,
|
134 |
+
"step": 105
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.04,
|
138 |
+
"learning_rate": 4.262756065417519e-05,
|
139 |
+
"loss": 3.1721,
|
140 |
+
"step": 110
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.05,
|
144 |
+
"learning_rate": 4.3030683326266976e-05,
|
145 |
+
"loss": 2.9709,
|
146 |
+
"step": 115
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.05,
|
150 |
+
"learning_rate": 4.3416646547868404e-05,
|
151 |
+
"loss": 2.9186,
|
152 |
+
"step": 120
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.05,
|
156 |
+
"learning_rate": 4.378685169968659e-05,
|
157 |
+
"loss": 3.1484,
|
158 |
+
"step": 125
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.05,
|
162 |
+
"learning_rate": 4.414253520408086e-05,
|
163 |
+
"loss": 2.9578,
|
164 |
+
"step": 130
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.05,
|
168 |
+
"learning_rate": 4.4484793440474126e-05,
|
169 |
+
"loss": 3.0733,
|
170 |
+
"step": 135
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.06,
|
174 |
+
"learning_rate": 4.481460312737877e-05,
|
175 |
+
"loss": 3.0312,
|
176 |
+
"step": 140
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.06,
|
180 |
+
"learning_rate": 4.513283812620485e-05,
|
181 |
+
"loss": 2.9714,
|
182 |
+
"step": 145
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.06,
|
186 |
+
"learning_rate": 4.544028339516985e-05,
|
187 |
+
"loss": 2.9715,
|
188 |
+
"step": 150
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.06,
|
192 |
+
"learning_rate": 4.573764665433774e-05,
|
193 |
+
"loss": 3.1439,
|
194 |
+
"step": 155
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.06,
|
198 |
+
"learning_rate": 4.60255681980474e-05,
|
199 |
+
"loss": 2.9821,
|
200 |
+
"step": 160
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.07,
|
204 |
+
"learning_rate": 4.630462919695989e-05,
|
205 |
+
"loss": 2.9551,
|
206 |
+
"step": 165
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.07,
|
210 |
+
"learning_rate": 4.6575358760395774e-05,
|
211 |
+
"loss": 3.0681,
|
212 |
+
"step": 170
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.07,
|
216 |
+
"learning_rate": 4.683823997468022e-05,
|
217 |
+
"loss": 3.0571,
|
218 |
+
"step": 175
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.07,
|
222 |
+
"learning_rate": 4.709371509065312e-05,
|
223 |
+
"loss": 3.0496,
|
224 |
+
"step": 180
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.07,
|
228 |
+
"learning_rate": 4.7342190000274217e-05,
|
229 |
+
"loss": 2.9148,
|
230 |
+
"step": 185
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.08,
|
234 |
+
"learning_rate": 4.758403811611965e-05,
|
235 |
+
"loss": 2.9517,
|
236 |
+
"step": 190
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.08,
|
240 |
+
"learning_rate": 4.781960374686557e-05,
|
241 |
+
"loss": 2.8606,
|
242 |
+
"step": 195
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.08,
|
246 |
+
"learning_rate": 4.8049205045348844e-05,
|
247 |
+
"loss": 2.9665,
|
248 |
+
"step": 200
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.08,
|
252 |
+
"learning_rate": 4.827313659255119e-05,
|
253 |
+
"loss": 2.9399,
|
254 |
+
"step": 205
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.08,
|
258 |
+
"learning_rate": 4.849167167016348e-05,
|
259 |
+
"loss": 2.9148,
|
260 |
+
"step": 210
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.09,
|
264 |
+
"learning_rate": 4.8705064265710865e-05,
|
265 |
+
"loss": 2.8763,
|
266 |
+
"step": 215
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.09,
|
270 |
+
"learning_rate": 4.8913550847138896e-05,
|
271 |
+
"loss": 2.9652,
|
272 |
+
"step": 220
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.09,
|
276 |
+
"learning_rate": 4.911735193795457e-05,
|
277 |
+
"loss": 2.854,
|
278 |
+
"step": 225
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.09,
|
282 |
+
"learning_rate": 4.9316673519230676e-05,
|
283 |
+
"loss": 3.0612,
|
284 |
+
"step": 230
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.1,
|
288 |
+
"learning_rate": 4.951170828082003e-05,
|
289 |
+
"loss": 2.9249,
|
290 |
+
"step": 235
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.1,
|
294 |
+
"learning_rate": 4.970263674083211e-05,
|
295 |
+
"loss": 2.8752,
|
296 |
+
"step": 240
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.1,
|
300 |
+
"learning_rate": 4.988962824967385e-05,
|
301 |
+
"loss": 3.0823,
|
302 |
+
"step": 245
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.1,
|
306 |
+
"learning_rate": 5e-05,
|
307 |
+
"loss": 2.9281,
|
308 |
+
"step": 250
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.1,
|
312 |
+
"learning_rate": 5e-05,
|
313 |
+
"loss": 3.0877,
|
314 |
+
"step": 255
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.11,
|
318 |
+
"learning_rate": 5e-05,
|
319 |
+
"loss": 2.8499,
|
320 |
+
"step": 260
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.11,
|
324 |
+
"learning_rate": 5e-05,
|
325 |
+
"loss": 2.9582,
|
326 |
+
"step": 265
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.11,
|
330 |
+
"learning_rate": 5e-05,
|
331 |
+
"loss": 2.9118,
|
332 |
+
"step": 270
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.11,
|
336 |
+
"learning_rate": 5e-05,
|
337 |
+
"loss": 3.0349,
|
338 |
+
"step": 275
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.11,
|
342 |
+
"learning_rate": 5e-05,
|
343 |
+
"loss": 2.7885,
|
344 |
+
"step": 280
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.12,
|
348 |
+
"learning_rate": 5e-05,
|
349 |
+
"loss": 3.0644,
|
350 |
+
"step": 285
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.12,
|
354 |
+
"learning_rate": 5e-05,
|
355 |
+
"loss": 2.9174,
|
356 |
+
"step": 290
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.12,
|
360 |
+
"learning_rate": 5e-05,
|
361 |
+
"loss": 2.8956,
|
362 |
+
"step": 295
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.12,
|
366 |
+
"learning_rate": 5e-05,
|
367 |
+
"loss": 2.8977,
|
368 |
+
"step": 300
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.12,
|
372 |
+
"learning_rate": 5e-05,
|
373 |
+
"loss": 2.7825,
|
374 |
+
"step": 305
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.13,
|
378 |
+
"learning_rate": 5e-05,
|
379 |
+
"loss": 2.9082,
|
380 |
+
"step": 310
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.13,
|
384 |
+
"learning_rate": 5e-05,
|
385 |
+
"loss": 2.8638,
|
386 |
+
"step": 315
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.13,
|
390 |
+
"learning_rate": 5e-05,
|
391 |
+
"loss": 3.0091,
|
392 |
+
"step": 320
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.13,
|
396 |
+
"learning_rate": 5e-05,
|
397 |
+
"loss": 2.8423,
|
398 |
+
"step": 325
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.13,
|
402 |
+
"learning_rate": 5e-05,
|
403 |
+
"loss": 3.0593,
|
404 |
+
"step": 330
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.14,
|
408 |
+
"learning_rate": 5e-05,
|
409 |
+
"loss": 3.0978,
|
410 |
+
"step": 335
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.14,
|
414 |
+
"learning_rate": 5e-05,
|
415 |
+
"loss": 2.9759,
|
416 |
+
"step": 340
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.14,
|
420 |
+
"learning_rate": 5e-05,
|
421 |
+
"loss": 2.7671,
|
422 |
+
"step": 345
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.14,
|
426 |
+
"learning_rate": 5e-05,
|
427 |
+
"loss": 2.7337,
|
428 |
+
"step": 350
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.14,
|
432 |
+
"learning_rate": 5e-05,
|
433 |
+
"loss": 2.7853,
|
434 |
+
"step": 355
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.15,
|
438 |
+
"learning_rate": 5e-05,
|
439 |
+
"loss": 2.7746,
|
440 |
+
"step": 360
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.15,
|
444 |
+
"learning_rate": 5e-05,
|
445 |
+
"loss": 2.8793,
|
446 |
+
"step": 365
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.15,
|
450 |
+
"learning_rate": 5e-05,
|
451 |
+
"loss": 2.8478,
|
452 |
+
"step": 370
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.15,
|
456 |
+
"learning_rate": 5e-05,
|
457 |
+
"loss": 2.9319,
|
458 |
+
"step": 375
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.15,
|
462 |
+
"learning_rate": 5e-05,
|
463 |
+
"loss": 2.9938,
|
464 |
+
"step": 380
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.16,
|
468 |
+
"learning_rate": 5e-05,
|
469 |
+
"loss": 2.9035,
|
470 |
+
"step": 385
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.16,
|
474 |
+
"learning_rate": 5e-05,
|
475 |
+
"loss": 2.8904,
|
476 |
+
"step": 390
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.16,
|
480 |
+
"learning_rate": 5e-05,
|
481 |
+
"loss": 2.9606,
|
482 |
+
"step": 395
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.16,
|
486 |
+
"learning_rate": 5e-05,
|
487 |
+
"loss": 3.0521,
|
488 |
+
"step": 400
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.16,
|
492 |
+
"learning_rate": 5e-05,
|
493 |
+
"loss": 2.9584,
|
494 |
+
"step": 405
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.17,
|
498 |
+
"learning_rate": 5e-05,
|
499 |
+
"loss": 2.8218,
|
500 |
+
"step": 410
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.17,
|
504 |
+
"learning_rate": 5e-05,
|
505 |
+
"loss": 2.9647,
|
506 |
+
"step": 415
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.17,
|
510 |
+
"learning_rate": 5e-05,
|
511 |
+
"loss": 2.792,
|
512 |
+
"step": 420
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.17,
|
516 |
+
"learning_rate": 5e-05,
|
517 |
+
"loss": 2.656,
|
518 |
+
"step": 425
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.17,
|
522 |
+
"learning_rate": 5e-05,
|
523 |
+
"loss": 2.905,
|
524 |
+
"step": 430
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.18,
|
528 |
+
"learning_rate": 5e-05,
|
529 |
+
"loss": 2.7492,
|
530 |
+
"step": 435
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.18,
|
534 |
+
"learning_rate": 5e-05,
|
535 |
+
"loss": 2.924,
|
536 |
+
"step": 440
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.18,
|
540 |
+
"learning_rate": 5e-05,
|
541 |
+
"loss": 2.672,
|
542 |
+
"step": 445
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.18,
|
546 |
+
"learning_rate": 5e-05,
|
547 |
+
"loss": 2.9088,
|
548 |
+
"step": 450
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.18,
|
552 |
+
"learning_rate": 5e-05,
|
553 |
+
"loss": 2.8127,
|
554 |
+
"step": 455
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.19,
|
558 |
+
"learning_rate": 5e-05,
|
559 |
+
"loss": 2.7125,
|
560 |
+
"step": 460
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.19,
|
564 |
+
"learning_rate": 5e-05,
|
565 |
+
"loss": 2.9101,
|
566 |
+
"step": 465
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.19,
|
570 |
+
"learning_rate": 5e-05,
|
571 |
+
"loss": 2.878,
|
572 |
+
"step": 470
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.19,
|
576 |
+
"learning_rate": 5e-05,
|
577 |
+
"loss": 2.9539,
|
578 |
+
"step": 475
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.19,
|
582 |
+
"learning_rate": 5e-05,
|
583 |
+
"loss": 2.7836,
|
584 |
+
"step": 480
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.2,
|
588 |
+
"learning_rate": 5e-05,
|
589 |
+
"loss": 2.9817,
|
590 |
+
"step": 485
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.2,
|
594 |
+
"learning_rate": 5e-05,
|
595 |
+
"loss": 2.9691,
|
596 |
+
"step": 490
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.2,
|
600 |
+
"learning_rate": 5e-05,
|
601 |
+
"loss": 2.7756,
|
602 |
+
"step": 495
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.2,
|
606 |
+
"learning_rate": 5e-05,
|
607 |
+
"loss": 2.8108,
|
608 |
+
"step": 500
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.2,
|
612 |
+
"learning_rate": 5e-05,
|
613 |
+
"loss": 2.7651,
|
614 |
+
"step": 505
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.21,
|
618 |
+
"learning_rate": 5e-05,
|
619 |
+
"loss": 2.8161,
|
620 |
+
"step": 510
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.21,
|
624 |
+
"learning_rate": 5e-05,
|
625 |
+
"loss": 2.7832,
|
626 |
+
"step": 515
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.21,
|
630 |
+
"learning_rate": 5e-05,
|
631 |
+
"loss": 2.7455,
|
632 |
+
"step": 520
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.21,
|
636 |
+
"learning_rate": 5e-05,
|
637 |
+
"loss": 2.8838,
|
638 |
+
"step": 525
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.21,
|
642 |
+
"learning_rate": 5e-05,
|
643 |
+
"loss": 2.7434,
|
644 |
+
"step": 530
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.22,
|
648 |
+
"learning_rate": 5e-05,
|
649 |
+
"loss": 2.8708,
|
650 |
+
"step": 535
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.22,
|
654 |
+
"learning_rate": 5e-05,
|
655 |
+
"loss": 2.8642,
|
656 |
+
"step": 540
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.22,
|
660 |
+
"learning_rate": 5e-05,
|
661 |
+
"loss": 2.7339,
|
662 |
+
"step": 545
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.22,
|
666 |
+
"learning_rate": 5e-05,
|
667 |
+
"loss": 2.7499,
|
668 |
+
"step": 550
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.22,
|
672 |
+
"learning_rate": 5e-05,
|
673 |
+
"loss": 2.7786,
|
674 |
+
"step": 555
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.23,
|
678 |
+
"learning_rate": 5e-05,
|
679 |
+
"loss": 2.8487,
|
680 |
+
"step": 560
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.23,
|
684 |
+
"learning_rate": 5e-05,
|
685 |
+
"loss": 2.8406,
|
686 |
+
"step": 565
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.23,
|
690 |
+
"learning_rate": 5e-05,
|
691 |
+
"loss": 2.8463,
|
692 |
+
"step": 570
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.23,
|
696 |
+
"learning_rate": 5e-05,
|
697 |
+
"loss": 2.7209,
|
698 |
+
"step": 575
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.23,
|
702 |
+
"learning_rate": 5e-05,
|
703 |
+
"loss": 2.9581,
|
704 |
+
"step": 580
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.24,
|
708 |
+
"learning_rate": 5e-05,
|
709 |
+
"loss": 2.8408,
|
710 |
+
"step": 585
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.24,
|
714 |
+
"learning_rate": 5e-05,
|
715 |
+
"loss": 2.9146,
|
716 |
+
"step": 590
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.24,
|
720 |
+
"learning_rate": 5e-05,
|
721 |
+
"loss": 2.8323,
|
722 |
+
"step": 595
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.24,
|
726 |
+
"learning_rate": 5e-05,
|
727 |
+
"loss": 2.8473,
|
728 |
+
"step": 600
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.24,
|
732 |
+
"learning_rate": 5e-05,
|
733 |
+
"loss": 2.8023,
|
734 |
+
"step": 605
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.25,
|
738 |
+
"learning_rate": 5e-05,
|
739 |
+
"loss": 2.859,
|
740 |
+
"step": 610
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.25,
|
744 |
+
"learning_rate": 5e-05,
|
745 |
+
"loss": 2.8659,
|
746 |
+
"step": 615
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.25,
|
750 |
+
"learning_rate": 5e-05,
|
751 |
+
"loss": 2.6733,
|
752 |
+
"step": 620
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.25,
|
756 |
+
"learning_rate": 5e-05,
|
757 |
+
"loss": 2.7982,
|
758 |
+
"step": 625
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.25,
|
762 |
+
"learning_rate": 5e-05,
|
763 |
+
"loss": 2.8614,
|
764 |
+
"step": 630
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.26,
|
768 |
+
"learning_rate": 5e-05,
|
769 |
+
"loss": 2.8252,
|
770 |
+
"step": 635
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.26,
|
774 |
+
"learning_rate": 5e-05,
|
775 |
+
"loss": 2.7545,
|
776 |
+
"step": 640
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.26,
|
780 |
+
"learning_rate": 5e-05,
|
781 |
+
"loss": 2.9128,
|
782 |
+
"step": 645
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.26,
|
786 |
+
"learning_rate": 5e-05,
|
787 |
+
"loss": 2.6117,
|
788 |
+
"step": 650
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.27,
|
792 |
+
"learning_rate": 5e-05,
|
793 |
+
"loss": 2.8768,
|
794 |
+
"step": 655
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.27,
|
798 |
+
"learning_rate": 5e-05,
|
799 |
+
"loss": 2.8761,
|
800 |
+
"step": 660
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.27,
|
804 |
+
"learning_rate": 5e-05,
|
805 |
+
"loss": 2.7655,
|
806 |
+
"step": 665
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.27,
|
810 |
+
"learning_rate": 5e-05,
|
811 |
+
"loss": 2.7963,
|
812 |
+
"step": 670
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.27,
|
816 |
+
"learning_rate": 5e-05,
|
817 |
+
"loss": 2.8481,
|
818 |
+
"step": 675
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.28,
|
822 |
+
"learning_rate": 5e-05,
|
823 |
+
"loss": 2.7366,
|
824 |
+
"step": 680
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.28,
|
828 |
+
"learning_rate": 5e-05,
|
829 |
+
"loss": 2.9392,
|
830 |
+
"step": 685
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.28,
|
834 |
+
"learning_rate": 5e-05,
|
835 |
+
"loss": 2.8233,
|
836 |
+
"step": 690
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.28,
|
840 |
+
"learning_rate": 5e-05,
|
841 |
+
"loss": 2.7672,
|
842 |
+
"step": 695
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.28,
|
846 |
+
"learning_rate": 5e-05,
|
847 |
+
"loss": 2.789,
|
848 |
+
"step": 700
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.29,
|
852 |
+
"learning_rate": 5e-05,
|
853 |
+
"loss": 2.7065,
|
854 |
+
"step": 705
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.29,
|
858 |
+
"learning_rate": 5e-05,
|
859 |
+
"loss": 2.8101,
|
860 |
+
"step": 710
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.29,
|
864 |
+
"learning_rate": 5e-05,
|
865 |
+
"loss": 2.6257,
|
866 |
+
"step": 715
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.29,
|
870 |
+
"learning_rate": 5e-05,
|
871 |
+
"loss": 2.7759,
|
872 |
+
"step": 720
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.29,
|
876 |
+
"learning_rate": 5e-05,
|
877 |
+
"loss": 2.7739,
|
878 |
+
"step": 725
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.3,
|
882 |
+
"learning_rate": 5e-05,
|
883 |
+
"loss": 2.6239,
|
884 |
+
"step": 730
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.3,
|
888 |
+
"learning_rate": 5e-05,
|
889 |
+
"loss": 2.7561,
|
890 |
+
"step": 735
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.3,
|
894 |
+
"learning_rate": 5e-05,
|
895 |
+
"loss": 2.8663,
|
896 |
+
"step": 740
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.3,
|
900 |
+
"learning_rate": 5e-05,
|
901 |
+
"loss": 2.7199,
|
902 |
+
"step": 745
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.3,
|
906 |
+
"learning_rate": 5e-05,
|
907 |
+
"loss": 2.7612,
|
908 |
+
"step": 750
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.31,
|
912 |
+
"learning_rate": 5e-05,
|
913 |
+
"loss": 2.8215,
|
914 |
+
"step": 755
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.31,
|
918 |
+
"learning_rate": 5e-05,
|
919 |
+
"loss": 2.7875,
|
920 |
+
"step": 760
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.31,
|
924 |
+
"learning_rate": 5e-05,
|
925 |
+
"loss": 2.7699,
|
926 |
+
"step": 765
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.31,
|
930 |
+
"learning_rate": 5e-05,
|
931 |
+
"loss": 2.7907,
|
932 |
+
"step": 770
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.31,
|
936 |
+
"learning_rate": 5e-05,
|
937 |
+
"loss": 3.023,
|
938 |
+
"step": 775
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.32,
|
942 |
+
"learning_rate": 5e-05,
|
943 |
+
"loss": 2.7708,
|
944 |
+
"step": 780
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.32,
|
948 |
+
"learning_rate": 5e-05,
|
949 |
+
"loss": 2.8424,
|
950 |
+
"step": 785
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.32,
|
954 |
+
"learning_rate": 5e-05,
|
955 |
+
"loss": 2.8524,
|
956 |
+
"step": 790
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.32,
|
960 |
+
"learning_rate": 5e-05,
|
961 |
+
"loss": 2.7407,
|
962 |
+
"step": 795
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.32,
|
966 |
+
"learning_rate": 5e-05,
|
967 |
+
"loss": 2.8392,
|
968 |
+
"step": 800
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.33,
|
972 |
+
"learning_rate": 5e-05,
|
973 |
+
"loss": 2.7107,
|
974 |
+
"step": 805
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.33,
|
978 |
+
"learning_rate": 5e-05,
|
979 |
+
"loss": 2.7377,
|
980 |
+
"step": 810
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.33,
|
984 |
+
"learning_rate": 5e-05,
|
985 |
+
"loss": 2.8285,
|
986 |
+
"step": 815
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.33,
|
990 |
+
"learning_rate": 5e-05,
|
991 |
+
"loss": 2.7663,
|
992 |
+
"step": 820
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.33,
|
996 |
+
"learning_rate": 5e-05,
|
997 |
+
"loss": 2.819,
|
998 |
+
"step": 825
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.34,
|
1002 |
+
"learning_rate": 5e-05,
|
1003 |
+
"loss": 2.7749,
|
1004 |
+
"step": 830
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.34,
|
1008 |
+
"learning_rate": 5e-05,
|
1009 |
+
"loss": 2.8127,
|
1010 |
+
"step": 835
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.34,
|
1014 |
+
"learning_rate": 5e-05,
|
1015 |
+
"loss": 2.7182,
|
1016 |
+
"step": 840
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.34,
|
1020 |
+
"learning_rate": 5e-05,
|
1021 |
+
"loss": 2.7712,
|
1022 |
+
"step": 845
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.34,
|
1026 |
+
"learning_rate": 5e-05,
|
1027 |
+
"loss": 2.6442,
|
1028 |
+
"step": 850
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.35,
|
1032 |
+
"learning_rate": 5e-05,
|
1033 |
+
"loss": 2.9364,
|
1034 |
+
"step": 855
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.35,
|
1038 |
+
"learning_rate": 5e-05,
|
1039 |
+
"loss": 2.9922,
|
1040 |
+
"step": 860
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.35,
|
1044 |
+
"learning_rate": 5e-05,
|
1045 |
+
"loss": 2.7308,
|
1046 |
+
"step": 865
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.35,
|
1050 |
+
"learning_rate": 5e-05,
|
1051 |
+
"loss": 2.6962,
|
1052 |
+
"step": 870
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.35,
|
1056 |
+
"learning_rate": 5e-05,
|
1057 |
+
"loss": 2.6137,
|
1058 |
+
"step": 875
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.36,
|
1062 |
+
"learning_rate": 5e-05,
|
1063 |
+
"loss": 2.7204,
|
1064 |
+
"step": 880
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.36,
|
1068 |
+
"learning_rate": 5e-05,
|
1069 |
+
"loss": 2.7692,
|
1070 |
+
"step": 885
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.36,
|
1074 |
+
"learning_rate": 5e-05,
|
1075 |
+
"loss": 2.794,
|
1076 |
+
"step": 890
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.36,
|
1080 |
+
"learning_rate": 5e-05,
|
1081 |
+
"loss": 2.7687,
|
1082 |
+
"step": 895
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.36,
|
1086 |
+
"learning_rate": 5e-05,
|
1087 |
+
"loss": 2.7605,
|
1088 |
+
"step": 900
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.37,
|
1092 |
+
"learning_rate": 5e-05,
|
1093 |
+
"loss": 2.7807,
|
1094 |
+
"step": 905
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.37,
|
1098 |
+
"learning_rate": 5e-05,
|
1099 |
+
"loss": 2.7144,
|
1100 |
+
"step": 910
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.37,
|
1104 |
+
"learning_rate": 5e-05,
|
1105 |
+
"loss": 2.6465,
|
1106 |
+
"step": 915
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.37,
|
1110 |
+
"learning_rate": 5e-05,
|
1111 |
+
"loss": 2.8023,
|
1112 |
+
"step": 920
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.37,
|
1116 |
+
"learning_rate": 5e-05,
|
1117 |
+
"loss": 2.6612,
|
1118 |
+
"step": 925
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.38,
|
1122 |
+
"learning_rate": 5e-05,
|
1123 |
+
"loss": 2.8403,
|
1124 |
+
"step": 930
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.38,
|
1128 |
+
"learning_rate": 5e-05,
|
1129 |
+
"loss": 2.7133,
|
1130 |
+
"step": 935
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.38,
|
1134 |
+
"learning_rate": 5e-05,
|
1135 |
+
"loss": 2.9143,
|
1136 |
+
"step": 940
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.38,
|
1140 |
+
"learning_rate": 5e-05,
|
1141 |
+
"loss": 2.7716,
|
1142 |
+
"step": 945
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.38,
|
1146 |
+
"learning_rate": 5e-05,
|
1147 |
+
"loss": 2.7732,
|
1148 |
+
"step": 950
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.39,
|
1152 |
+
"learning_rate": 5e-05,
|
1153 |
+
"loss": 2.788,
|
1154 |
+
"step": 955
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.39,
|
1158 |
+
"learning_rate": 5e-05,
|
1159 |
+
"loss": 2.7164,
|
1160 |
+
"step": 960
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.39,
|
1164 |
+
"learning_rate": 5e-05,
|
1165 |
+
"loss": 2.6721,
|
1166 |
+
"step": 965
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.39,
|
1170 |
+
"learning_rate": 5e-05,
|
1171 |
+
"loss": 2.9455,
|
1172 |
+
"step": 970
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.39,
|
1176 |
+
"learning_rate": 5e-05,
|
1177 |
+
"loss": 2.6689,
|
1178 |
+
"step": 975
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.4,
|
1182 |
+
"learning_rate": 5e-05,
|
1183 |
+
"loss": 2.629,
|
1184 |
+
"step": 980
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.4,
|
1188 |
+
"learning_rate": 5e-05,
|
1189 |
+
"loss": 2.8129,
|
1190 |
+
"step": 985
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.4,
|
1194 |
+
"learning_rate": 5e-05,
|
1195 |
+
"loss": 2.6629,
|
1196 |
+
"step": 990
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.4,
|
1200 |
+
"learning_rate": 5e-05,
|
1201 |
+
"loss": 2.8313,
|
1202 |
+
"step": 995
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.4,
|
1206 |
+
"learning_rate": 5e-05,
|
1207 |
+
"loss": 2.9289,
|
1208 |
+
"step": 1000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.41,
|
1212 |
+
"learning_rate": 5e-05,
|
1213 |
+
"loss": 2.7845,
|
1214 |
+
"step": 1005
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.41,
|
1218 |
+
"learning_rate": 5e-05,
|
1219 |
+
"loss": 2.7841,
|
1220 |
+
"step": 1010
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.41,
|
1224 |
+
"learning_rate": 5e-05,
|
1225 |
+
"loss": 2.78,
|
1226 |
+
"step": 1015
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.41,
|
1230 |
+
"learning_rate": 5e-05,
|
1231 |
+
"loss": 2.8525,
|
1232 |
+
"step": 1020
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.41,
|
1236 |
+
"learning_rate": 5e-05,
|
1237 |
+
"loss": 2.7313,
|
1238 |
+
"step": 1025
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.42,
|
1242 |
+
"learning_rate": 5e-05,
|
1243 |
+
"loss": 2.8678,
|
1244 |
+
"step": 1030
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.42,
|
1248 |
+
"learning_rate": 5e-05,
|
1249 |
+
"loss": 2.8533,
|
1250 |
+
"step": 1035
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.42,
|
1254 |
+
"learning_rate": 5e-05,
|
1255 |
+
"loss": 2.7356,
|
1256 |
+
"step": 1040
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.42,
|
1260 |
+
"learning_rate": 5e-05,
|
1261 |
+
"loss": 2.7197,
|
1262 |
+
"step": 1045
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.42,
|
1266 |
+
"learning_rate": 5e-05,
|
1267 |
+
"loss": 2.7888,
|
1268 |
+
"step": 1050
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.43,
|
1272 |
+
"learning_rate": 5e-05,
|
1273 |
+
"loss": 2.8152,
|
1274 |
+
"step": 1055
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.43,
|
1278 |
+
"learning_rate": 5e-05,
|
1279 |
+
"loss": 2.6529,
|
1280 |
+
"step": 1060
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 0.43,
|
1284 |
+
"learning_rate": 5e-05,
|
1285 |
+
"loss": 2.715,
|
1286 |
+
"step": 1065
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.43,
|
1290 |
+
"learning_rate": 5e-05,
|
1291 |
+
"loss": 2.7427,
|
1292 |
+
"step": 1070
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.43,
|
1296 |
+
"learning_rate": 5e-05,
|
1297 |
+
"loss": 2.7064,
|
1298 |
+
"step": 1075
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.44,
|
1302 |
+
"learning_rate": 5e-05,
|
1303 |
+
"loss": 2.8462,
|
1304 |
+
"step": 1080
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.44,
|
1308 |
+
"learning_rate": 5e-05,
|
1309 |
+
"loss": 2.6574,
|
1310 |
+
"step": 1085
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.44,
|
1314 |
+
"learning_rate": 5e-05,
|
1315 |
+
"loss": 2.8997,
|
1316 |
+
"step": 1090
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.44,
|
1320 |
+
"learning_rate": 5e-05,
|
1321 |
+
"loss": 2.7303,
|
1322 |
+
"step": 1095
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.45,
|
1326 |
+
"learning_rate": 5e-05,
|
1327 |
+
"loss": 2.7889,
|
1328 |
+
"step": 1100
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.45,
|
1332 |
+
"learning_rate": 5e-05,
|
1333 |
+
"loss": 2.7992,
|
1334 |
+
"step": 1105
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.45,
|
1338 |
+
"learning_rate": 5e-05,
|
1339 |
+
"loss": 2.62,
|
1340 |
+
"step": 1110
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.45,
|
1344 |
+
"learning_rate": 5e-05,
|
1345 |
+
"loss": 2.6867,
|
1346 |
+
"step": 1115
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.45,
|
1350 |
+
"learning_rate": 5e-05,
|
1351 |
+
"loss": 2.5923,
|
1352 |
+
"step": 1120
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.46,
|
1356 |
+
"learning_rate": 5e-05,
|
1357 |
+
"loss": 2.6593,
|
1358 |
+
"step": 1125
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.46,
|
1362 |
+
"learning_rate": 5e-05,
|
1363 |
+
"loss": 2.8382,
|
1364 |
+
"step": 1130
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.46,
|
1368 |
+
"learning_rate": 5e-05,
|
1369 |
+
"loss": 2.5861,
|
1370 |
+
"step": 1135
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.46,
|
1374 |
+
"learning_rate": 5e-05,
|
1375 |
+
"loss": 2.8416,
|
1376 |
+
"step": 1140
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.46,
|
1380 |
+
"learning_rate": 5e-05,
|
1381 |
+
"loss": 2.9029,
|
1382 |
+
"step": 1145
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.47,
|
1386 |
+
"learning_rate": 5e-05,
|
1387 |
+
"loss": 2.6753,
|
1388 |
+
"step": 1150
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.47,
|
1392 |
+
"learning_rate": 5e-05,
|
1393 |
+
"loss": 2.6871,
|
1394 |
+
"step": 1155
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.47,
|
1398 |
+
"learning_rate": 5e-05,
|
1399 |
+
"loss": 2.6733,
|
1400 |
+
"step": 1160
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.47,
|
1404 |
+
"learning_rate": 5e-05,
|
1405 |
+
"loss": 2.6566,
|
1406 |
+
"step": 1165
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.47,
|
1410 |
+
"learning_rate": 5e-05,
|
1411 |
+
"loss": 2.8209,
|
1412 |
+
"step": 1170
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.48,
|
1416 |
+
"learning_rate": 5e-05,
|
1417 |
+
"loss": 2.8289,
|
1418 |
+
"step": 1175
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.48,
|
1422 |
+
"learning_rate": 5e-05,
|
1423 |
+
"loss": 2.8023,
|
1424 |
+
"step": 1180
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.48,
|
1428 |
+
"learning_rate": 5e-05,
|
1429 |
+
"loss": 2.6979,
|
1430 |
+
"step": 1185
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.48,
|
1434 |
+
"learning_rate": 5e-05,
|
1435 |
+
"loss": 2.6954,
|
1436 |
+
"step": 1190
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 0.48,
|
1440 |
+
"learning_rate": 5e-05,
|
1441 |
+
"loss": 2.7828,
|
1442 |
+
"step": 1195
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.49,
|
1446 |
+
"learning_rate": 5e-05,
|
1447 |
+
"loss": 2.7909,
|
1448 |
+
"step": 1200
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.49,
|
1452 |
+
"learning_rate": 5e-05,
|
1453 |
+
"loss": 2.6024,
|
1454 |
+
"step": 1205
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.49,
|
1458 |
+
"learning_rate": 5e-05,
|
1459 |
+
"loss": 2.7298,
|
1460 |
+
"step": 1210
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.49,
|
1464 |
+
"learning_rate": 5e-05,
|
1465 |
+
"loss": 2.5615,
|
1466 |
+
"step": 1215
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.49,
|
1470 |
+
"learning_rate": 5e-05,
|
1471 |
+
"loss": 2.6645,
|
1472 |
+
"step": 1220
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.5,
|
1476 |
+
"learning_rate": 5e-05,
|
1477 |
+
"loss": 2.6223,
|
1478 |
+
"step": 1225
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 0.5,
|
1482 |
+
"learning_rate": 5e-05,
|
1483 |
+
"loss": 2.8121,
|
1484 |
+
"step": 1230
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.5,
|
1488 |
+
"learning_rate": 5e-05,
|
1489 |
+
"loss": 2.7913,
|
1490 |
+
"step": 1235
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.5,
|
1494 |
+
"learning_rate": 5e-05,
|
1495 |
+
"loss": 2.6475,
|
1496 |
+
"step": 1240
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.5,
|
1500 |
+
"learning_rate": 5e-05,
|
1501 |
+
"loss": 2.7489,
|
1502 |
+
"step": 1245
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.51,
|
1506 |
+
"learning_rate": 5e-05,
|
1507 |
+
"loss": 2.5228,
|
1508 |
+
"step": 1250
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.51,
|
1512 |
+
"learning_rate": 5e-05,
|
1513 |
+
"loss": 2.7824,
|
1514 |
+
"step": 1255
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.51,
|
1518 |
+
"learning_rate": 5e-05,
|
1519 |
+
"loss": 2.7072,
|
1520 |
+
"step": 1260
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.51,
|
1524 |
+
"learning_rate": 5e-05,
|
1525 |
+
"loss": 2.8302,
|
1526 |
+
"step": 1265
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.51,
|
1530 |
+
"learning_rate": 5e-05,
|
1531 |
+
"loss": 2.562,
|
1532 |
+
"step": 1270
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.52,
|
1536 |
+
"learning_rate": 5e-05,
|
1537 |
+
"loss": 2.6751,
|
1538 |
+
"step": 1275
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.52,
|
1542 |
+
"learning_rate": 5e-05,
|
1543 |
+
"loss": 2.6708,
|
1544 |
+
"step": 1280
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.52,
|
1548 |
+
"learning_rate": 5e-05,
|
1549 |
+
"loss": 2.7931,
|
1550 |
+
"step": 1285
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.52,
|
1554 |
+
"learning_rate": 5e-05,
|
1555 |
+
"loss": 2.8918,
|
1556 |
+
"step": 1290
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.52,
|
1560 |
+
"learning_rate": 5e-05,
|
1561 |
+
"loss": 2.7633,
|
1562 |
+
"step": 1295
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.53,
|
1566 |
+
"learning_rate": 5e-05,
|
1567 |
+
"loss": 2.6468,
|
1568 |
+
"step": 1300
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.53,
|
1572 |
+
"learning_rate": 5e-05,
|
1573 |
+
"loss": 2.829,
|
1574 |
+
"step": 1305
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.53,
|
1578 |
+
"learning_rate": 5e-05,
|
1579 |
+
"loss": 2.5203,
|
1580 |
+
"step": 1310
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.53,
|
1584 |
+
"learning_rate": 5e-05,
|
1585 |
+
"loss": 2.8926,
|
1586 |
+
"step": 1315
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.53,
|
1590 |
+
"learning_rate": 5e-05,
|
1591 |
+
"loss": 2.5314,
|
1592 |
+
"step": 1320
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.54,
|
1596 |
+
"learning_rate": 5e-05,
|
1597 |
+
"loss": 2.6843,
|
1598 |
+
"step": 1325
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.54,
|
1602 |
+
"learning_rate": 5e-05,
|
1603 |
+
"loss": 2.6962,
|
1604 |
+
"step": 1330
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.54,
|
1608 |
+
"learning_rate": 5e-05,
|
1609 |
+
"loss": 2.9101,
|
1610 |
+
"step": 1335
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.54,
|
1614 |
+
"learning_rate": 5e-05,
|
1615 |
+
"loss": 2.7593,
|
1616 |
+
"step": 1340
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.54,
|
1620 |
+
"learning_rate": 5e-05,
|
1621 |
+
"loss": 2.7953,
|
1622 |
+
"step": 1345
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.55,
|
1626 |
+
"learning_rate": 5e-05,
|
1627 |
+
"loss": 2.6882,
|
1628 |
+
"step": 1350
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 0.55,
|
1632 |
+
"learning_rate": 5e-05,
|
1633 |
+
"loss": 2.6233,
|
1634 |
+
"step": 1355
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.55,
|
1638 |
+
"learning_rate": 5e-05,
|
1639 |
+
"loss": 2.7277,
|
1640 |
+
"step": 1360
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.55,
|
1644 |
+
"learning_rate": 5e-05,
|
1645 |
+
"loss": 2.5897,
|
1646 |
+
"step": 1365
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 0.55,
|
1650 |
+
"learning_rate": 5e-05,
|
1651 |
+
"loss": 2.618,
|
1652 |
+
"step": 1370
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.56,
|
1656 |
+
"learning_rate": 5e-05,
|
1657 |
+
"loss": 2.7698,
|
1658 |
+
"step": 1375
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.56,
|
1662 |
+
"learning_rate": 5e-05,
|
1663 |
+
"loss": 2.6026,
|
1664 |
+
"step": 1380
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.56,
|
1668 |
+
"learning_rate": 5e-05,
|
1669 |
+
"loss": 2.8144,
|
1670 |
+
"step": 1385
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.56,
|
1674 |
+
"learning_rate": 5e-05,
|
1675 |
+
"loss": 2.7199,
|
1676 |
+
"step": 1390
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.56,
|
1680 |
+
"learning_rate": 5e-05,
|
1681 |
+
"loss": 2.612,
|
1682 |
+
"step": 1395
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.57,
|
1686 |
+
"learning_rate": 5e-05,
|
1687 |
+
"loss": 2.7256,
|
1688 |
+
"step": 1400
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 0.57,
|
1692 |
+
"learning_rate": 5e-05,
|
1693 |
+
"loss": 2.7822,
|
1694 |
+
"step": 1405
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.57,
|
1698 |
+
"learning_rate": 5e-05,
|
1699 |
+
"loss": 2.7898,
|
1700 |
+
"step": 1410
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.57,
|
1704 |
+
"learning_rate": 5e-05,
|
1705 |
+
"loss": 2.6511,
|
1706 |
+
"step": 1415
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.57,
|
1710 |
+
"learning_rate": 5e-05,
|
1711 |
+
"loss": 2.68,
|
1712 |
+
"step": 1420
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 0.58,
|
1716 |
+
"learning_rate": 5e-05,
|
1717 |
+
"loss": 2.6535,
|
1718 |
+
"step": 1425
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.58,
|
1722 |
+
"learning_rate": 5e-05,
|
1723 |
+
"loss": 2.7386,
|
1724 |
+
"step": 1430
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.58,
|
1728 |
+
"learning_rate": 5e-05,
|
1729 |
+
"loss": 2.7598,
|
1730 |
+
"step": 1435
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 0.58,
|
1734 |
+
"learning_rate": 5e-05,
|
1735 |
+
"loss": 2.7257,
|
1736 |
+
"step": 1440
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.58,
|
1740 |
+
"learning_rate": 5e-05,
|
1741 |
+
"loss": 2.7083,
|
1742 |
+
"step": 1445
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.59,
|
1746 |
+
"learning_rate": 5e-05,
|
1747 |
+
"loss": 2.6456,
|
1748 |
+
"step": 1450
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.59,
|
1752 |
+
"learning_rate": 5e-05,
|
1753 |
+
"loss": 2.8651,
|
1754 |
+
"step": 1455
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.59,
|
1758 |
+
"learning_rate": 5e-05,
|
1759 |
+
"loss": 2.6377,
|
1760 |
+
"step": 1460
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.59,
|
1764 |
+
"learning_rate": 5e-05,
|
1765 |
+
"loss": 2.7162,
|
1766 |
+
"step": 1465
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.59,
|
1770 |
+
"learning_rate": 5e-05,
|
1771 |
+
"loss": 2.7777,
|
1772 |
+
"step": 1470
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 0.6,
|
1776 |
+
"learning_rate": 5e-05,
|
1777 |
+
"loss": 2.6719,
|
1778 |
+
"step": 1475
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.6,
|
1782 |
+
"learning_rate": 5e-05,
|
1783 |
+
"loss": 2.5657,
|
1784 |
+
"step": 1480
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.6,
|
1788 |
+
"learning_rate": 5e-05,
|
1789 |
+
"loss": 2.6202,
|
1790 |
+
"step": 1485
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 0.6,
|
1794 |
+
"learning_rate": 5e-05,
|
1795 |
+
"loss": 2.7201,
|
1796 |
+
"step": 1490
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.6,
|
1800 |
+
"learning_rate": 5e-05,
|
1801 |
+
"loss": 2.8134,
|
1802 |
+
"step": 1495
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.61,
|
1806 |
+
"learning_rate": 5e-05,
|
1807 |
+
"loss": 2.9,
|
1808 |
+
"step": 1500
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.61,
|
1812 |
+
"learning_rate": 5e-05,
|
1813 |
+
"loss": 2.8065,
|
1814 |
+
"step": 1505
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 0.61,
|
1818 |
+
"learning_rate": 5e-05,
|
1819 |
+
"loss": 2.7656,
|
1820 |
+
"step": 1510
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.61,
|
1824 |
+
"learning_rate": 5e-05,
|
1825 |
+
"loss": 2.7519,
|
1826 |
+
"step": 1515
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 0.61,
|
1830 |
+
"learning_rate": 5e-05,
|
1831 |
+
"loss": 2.6922,
|
1832 |
+
"step": 1520
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 0.62,
|
1836 |
+
"learning_rate": 5e-05,
|
1837 |
+
"loss": 2.5151,
|
1838 |
+
"step": 1525
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.62,
|
1842 |
+
"learning_rate": 5e-05,
|
1843 |
+
"loss": 2.6186,
|
1844 |
+
"step": 1530
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.62,
|
1848 |
+
"learning_rate": 5e-05,
|
1849 |
+
"loss": 2.6513,
|
1850 |
+
"step": 1535
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.62,
|
1854 |
+
"learning_rate": 5e-05,
|
1855 |
+
"loss": 2.6852,
|
1856 |
+
"step": 1540
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 0.63,
|
1860 |
+
"learning_rate": 5e-05,
|
1861 |
+
"loss": 2.7875,
|
1862 |
+
"step": 1545
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.63,
|
1866 |
+
"learning_rate": 5e-05,
|
1867 |
+
"loss": 2.8141,
|
1868 |
+
"step": 1550
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.63,
|
1872 |
+
"learning_rate": 5e-05,
|
1873 |
+
"loss": 2.6425,
|
1874 |
+
"step": 1555
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.63,
|
1878 |
+
"learning_rate": 5e-05,
|
1879 |
+
"loss": 2.72,
|
1880 |
+
"step": 1560
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.63,
|
1884 |
+
"learning_rate": 5e-05,
|
1885 |
+
"loss": 2.7421,
|
1886 |
+
"step": 1565
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.64,
|
1890 |
+
"learning_rate": 5e-05,
|
1891 |
+
"loss": 2.7139,
|
1892 |
+
"step": 1570
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.64,
|
1896 |
+
"learning_rate": 5e-05,
|
1897 |
+
"loss": 2.6792,
|
1898 |
+
"step": 1575
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 0.64,
|
1902 |
+
"learning_rate": 5e-05,
|
1903 |
+
"loss": 2.5915,
|
1904 |
+
"step": 1580
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.64,
|
1908 |
+
"learning_rate": 5e-05,
|
1909 |
+
"loss": 2.6162,
|
1910 |
+
"step": 1585
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.64,
|
1914 |
+
"learning_rate": 5e-05,
|
1915 |
+
"loss": 2.617,
|
1916 |
+
"step": 1590
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.65,
|
1920 |
+
"learning_rate": 5e-05,
|
1921 |
+
"loss": 2.7125,
|
1922 |
+
"step": 1595
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.65,
|
1926 |
+
"learning_rate": 5e-05,
|
1927 |
+
"loss": 2.7146,
|
1928 |
+
"step": 1600
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.65,
|
1932 |
+
"learning_rate": 5e-05,
|
1933 |
+
"loss": 2.5648,
|
1934 |
+
"step": 1605
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.65,
|
1938 |
+
"learning_rate": 5e-05,
|
1939 |
+
"loss": 2.8611,
|
1940 |
+
"step": 1610
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 0.65,
|
1944 |
+
"learning_rate": 5e-05,
|
1945 |
+
"loss": 2.5752,
|
1946 |
+
"step": 1615
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.66,
|
1950 |
+
"learning_rate": 5e-05,
|
1951 |
+
"loss": 2.6658,
|
1952 |
+
"step": 1620
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 0.66,
|
1956 |
+
"learning_rate": 5e-05,
|
1957 |
+
"loss": 2.7633,
|
1958 |
+
"step": 1625
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 0.66,
|
1962 |
+
"learning_rate": 5e-05,
|
1963 |
+
"loss": 2.6336,
|
1964 |
+
"step": 1630
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.66,
|
1968 |
+
"learning_rate": 5e-05,
|
1969 |
+
"loss": 2.771,
|
1970 |
+
"step": 1635
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.66,
|
1974 |
+
"learning_rate": 5e-05,
|
1975 |
+
"loss": 2.8223,
|
1976 |
+
"step": 1640
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.67,
|
1980 |
+
"learning_rate": 5e-05,
|
1981 |
+
"loss": 2.7626,
|
1982 |
+
"step": 1645
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 0.67,
|
1986 |
+
"learning_rate": 5e-05,
|
1987 |
+
"loss": 2.7405,
|
1988 |
+
"step": 1650
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.67,
|
1992 |
+
"learning_rate": 5e-05,
|
1993 |
+
"loss": 2.7567,
|
1994 |
+
"step": 1655
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.67,
|
1998 |
+
"learning_rate": 5e-05,
|
1999 |
+
"loss": 2.8065,
|
2000 |
+
"step": 1660
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.67,
|
2004 |
+
"learning_rate": 5e-05,
|
2005 |
+
"loss": 2.6281,
|
2006 |
+
"step": 1665
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.68,
|
2010 |
+
"learning_rate": 5e-05,
|
2011 |
+
"loss": 2.5907,
|
2012 |
+
"step": 1670
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.68,
|
2016 |
+
"learning_rate": 5e-05,
|
2017 |
+
"loss": 2.8343,
|
2018 |
+
"step": 1675
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.68,
|
2022 |
+
"learning_rate": 5e-05,
|
2023 |
+
"loss": 2.5374,
|
2024 |
+
"step": 1680
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.68,
|
2028 |
+
"learning_rate": 5e-05,
|
2029 |
+
"loss": 2.6573,
|
2030 |
+
"step": 1685
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.68,
|
2034 |
+
"learning_rate": 5e-05,
|
2035 |
+
"loss": 2.7715,
|
2036 |
+
"step": 1690
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 0.69,
|
2040 |
+
"learning_rate": 5e-05,
|
2041 |
+
"loss": 2.7022,
|
2042 |
+
"step": 1695
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.69,
|
2046 |
+
"learning_rate": 5e-05,
|
2047 |
+
"loss": 2.6918,
|
2048 |
+
"step": 1700
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.69,
|
2052 |
+
"learning_rate": 5e-05,
|
2053 |
+
"loss": 2.7902,
|
2054 |
+
"step": 1705
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.69,
|
2058 |
+
"learning_rate": 5e-05,
|
2059 |
+
"loss": 2.7458,
|
2060 |
+
"step": 1710
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.69,
|
2064 |
+
"learning_rate": 5e-05,
|
2065 |
+
"loss": 2.6979,
|
2066 |
+
"step": 1715
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.7,
|
2070 |
+
"learning_rate": 5e-05,
|
2071 |
+
"loss": 2.7609,
|
2072 |
+
"step": 1720
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.7,
|
2076 |
+
"learning_rate": 5e-05,
|
2077 |
+
"loss": 2.6818,
|
2078 |
+
"step": 1725
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 0.7,
|
2082 |
+
"learning_rate": 5e-05,
|
2083 |
+
"loss": 2.6761,
|
2084 |
+
"step": 1730
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.7,
|
2088 |
+
"learning_rate": 5e-05,
|
2089 |
+
"loss": 2.7184,
|
2090 |
+
"step": 1735
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.7,
|
2094 |
+
"learning_rate": 5e-05,
|
2095 |
+
"loss": 2.585,
|
2096 |
+
"step": 1740
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.71,
|
2100 |
+
"learning_rate": 5e-05,
|
2101 |
+
"loss": 2.7434,
|
2102 |
+
"step": 1745
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.71,
|
2106 |
+
"learning_rate": 5e-05,
|
2107 |
+
"loss": 2.6304,
|
2108 |
+
"step": 1750
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 0.71,
|
2112 |
+
"learning_rate": 5e-05,
|
2113 |
+
"loss": 2.841,
|
2114 |
+
"step": 1755
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.71,
|
2118 |
+
"learning_rate": 5e-05,
|
2119 |
+
"loss": 2.7202,
|
2120 |
+
"step": 1760
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 0.71,
|
2124 |
+
"learning_rate": 5e-05,
|
2125 |
+
"loss": 2.5044,
|
2126 |
+
"step": 1765
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.72,
|
2130 |
+
"learning_rate": 5e-05,
|
2131 |
+
"loss": 2.655,
|
2132 |
+
"step": 1770
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.72,
|
2136 |
+
"learning_rate": 5e-05,
|
2137 |
+
"loss": 2.5988,
|
2138 |
+
"step": 1775
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.72,
|
2142 |
+
"learning_rate": 5e-05,
|
2143 |
+
"loss": 2.588,
|
2144 |
+
"step": 1780
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.72,
|
2148 |
+
"learning_rate": 5e-05,
|
2149 |
+
"loss": 2.7623,
|
2150 |
+
"step": 1785
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 0.72,
|
2154 |
+
"learning_rate": 5e-05,
|
2155 |
+
"loss": 2.7245,
|
2156 |
+
"step": 1790
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.73,
|
2160 |
+
"learning_rate": 5e-05,
|
2161 |
+
"loss": 2.6365,
|
2162 |
+
"step": 1795
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 0.73,
|
2166 |
+
"learning_rate": 5e-05,
|
2167 |
+
"loss": 2.6877,
|
2168 |
+
"step": 1800
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 0.73,
|
2172 |
+
"learning_rate": 5e-05,
|
2173 |
+
"loss": 2.5983,
|
2174 |
+
"step": 1805
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.73,
|
2178 |
+
"learning_rate": 5e-05,
|
2179 |
+
"loss": 2.7249,
|
2180 |
+
"step": 1810
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.73,
|
2184 |
+
"learning_rate": 5e-05,
|
2185 |
+
"loss": 2.7584,
|
2186 |
+
"step": 1815
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.74,
|
2190 |
+
"learning_rate": 5e-05,
|
2191 |
+
"loss": 2.7737,
|
2192 |
+
"step": 1820
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.74,
|
2196 |
+
"learning_rate": 5e-05,
|
2197 |
+
"loss": 2.7943,
|
2198 |
+
"step": 1825
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.74,
|
2202 |
+
"learning_rate": 5e-05,
|
2203 |
+
"loss": 2.6356,
|
2204 |
+
"step": 1830
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 0.74,
|
2208 |
+
"learning_rate": 5e-05,
|
2209 |
+
"loss": 2.535,
|
2210 |
+
"step": 1835
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 0.74,
|
2214 |
+
"learning_rate": 5e-05,
|
2215 |
+
"loss": 2.7207,
|
2216 |
+
"step": 1840
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.75,
|
2220 |
+
"learning_rate": 5e-05,
|
2221 |
+
"loss": 2.7745,
|
2222 |
+
"step": 1845
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.75,
|
2226 |
+
"learning_rate": 5e-05,
|
2227 |
+
"loss": 2.6661,
|
2228 |
+
"step": 1850
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.75,
|
2232 |
+
"learning_rate": 5e-05,
|
2233 |
+
"loss": 2.6929,
|
2234 |
+
"step": 1855
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.75,
|
2238 |
+
"learning_rate": 5e-05,
|
2239 |
+
"loss": 2.6875,
|
2240 |
+
"step": 1860
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 0.75,
|
2244 |
+
"learning_rate": 5e-05,
|
2245 |
+
"loss": 2.7406,
|
2246 |
+
"step": 1865
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 0.76,
|
2250 |
+
"learning_rate": 5e-05,
|
2251 |
+
"loss": 2.8286,
|
2252 |
+
"step": 1870
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 0.76,
|
2256 |
+
"learning_rate": 5e-05,
|
2257 |
+
"loss": 2.7516,
|
2258 |
+
"step": 1875
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.76,
|
2262 |
+
"learning_rate": 5e-05,
|
2263 |
+
"loss": 2.7069,
|
2264 |
+
"step": 1880
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.76,
|
2268 |
+
"learning_rate": 5e-05,
|
2269 |
+
"loss": 2.6228,
|
2270 |
+
"step": 1885
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.76,
|
2274 |
+
"learning_rate": 5e-05,
|
2275 |
+
"loss": 2.7762,
|
2276 |
+
"step": 1890
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.77,
|
2280 |
+
"learning_rate": 5e-05,
|
2281 |
+
"loss": 2.694,
|
2282 |
+
"step": 1895
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 0.77,
|
2286 |
+
"learning_rate": 5e-05,
|
2287 |
+
"loss": 2.6888,
|
2288 |
+
"step": 1900
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 0.77,
|
2292 |
+
"learning_rate": 5e-05,
|
2293 |
+
"loss": 2.7838,
|
2294 |
+
"step": 1905
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 0.77,
|
2298 |
+
"learning_rate": 5e-05,
|
2299 |
+
"loss": 2.6155,
|
2300 |
+
"step": 1910
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.77,
|
2304 |
+
"learning_rate": 5e-05,
|
2305 |
+
"loss": 2.5779,
|
2306 |
+
"step": 1915
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.78,
|
2310 |
+
"learning_rate": 5e-05,
|
2311 |
+
"loss": 2.6237,
|
2312 |
+
"step": 1920
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.78,
|
2316 |
+
"learning_rate": 5e-05,
|
2317 |
+
"loss": 2.6635,
|
2318 |
+
"step": 1925
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.78,
|
2322 |
+
"learning_rate": 5e-05,
|
2323 |
+
"loss": 2.6905,
|
2324 |
+
"step": 1930
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 0.78,
|
2328 |
+
"learning_rate": 5e-05,
|
2329 |
+
"loss": 2.6694,
|
2330 |
+
"step": 1935
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 0.78,
|
2334 |
+
"learning_rate": 5e-05,
|
2335 |
+
"loss": 2.4783,
|
2336 |
+
"step": 1940
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 0.79,
|
2340 |
+
"learning_rate": 5e-05,
|
2341 |
+
"loss": 2.7565,
|
2342 |
+
"step": 1945
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.79,
|
2346 |
+
"learning_rate": 5e-05,
|
2347 |
+
"loss": 2.7145,
|
2348 |
+
"step": 1950
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.79,
|
2352 |
+
"learning_rate": 5e-05,
|
2353 |
+
"loss": 2.6378,
|
2354 |
+
"step": 1955
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.79,
|
2358 |
+
"learning_rate": 5e-05,
|
2359 |
+
"loss": 2.7469,
|
2360 |
+
"step": 1960
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.8,
|
2364 |
+
"learning_rate": 5e-05,
|
2365 |
+
"loss": 2.6073,
|
2366 |
+
"step": 1965
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 0.8,
|
2370 |
+
"learning_rate": 5e-05,
|
2371 |
+
"loss": 2.7848,
|
2372 |
+
"step": 1970
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 0.8,
|
2376 |
+
"learning_rate": 5e-05,
|
2377 |
+
"loss": 2.6595,
|
2378 |
+
"step": 1975
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 0.8,
|
2382 |
+
"learning_rate": 5e-05,
|
2383 |
+
"loss": 2.8059,
|
2384 |
+
"step": 1980
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 0.8,
|
2388 |
+
"learning_rate": 5e-05,
|
2389 |
+
"loss": 2.7439,
|
2390 |
+
"step": 1985
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.81,
|
2394 |
+
"learning_rate": 5e-05,
|
2395 |
+
"loss": 2.583,
|
2396 |
+
"step": 1990
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.81,
|
2400 |
+
"learning_rate": 5e-05,
|
2401 |
+
"loss": 2.7066,
|
2402 |
+
"step": 1995
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 0.81,
|
2406 |
+
"learning_rate": 5e-05,
|
2407 |
+
"loss": 2.6711,
|
2408 |
+
"step": 2000
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 0.81,
|
2412 |
+
"learning_rate": 5e-05,
|
2413 |
+
"loss": 2.6781,
|
2414 |
+
"step": 2005
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 0.81,
|
2418 |
+
"learning_rate": 5e-05,
|
2419 |
+
"loss": 2.6504,
|
2420 |
+
"step": 2010
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 0.82,
|
2424 |
+
"learning_rate": 5e-05,
|
2425 |
+
"loss": 2.601,
|
2426 |
+
"step": 2015
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 0.82,
|
2430 |
+
"learning_rate": 5e-05,
|
2431 |
+
"loss": 2.7151,
|
2432 |
+
"step": 2020
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.82,
|
2436 |
+
"learning_rate": 5e-05,
|
2437 |
+
"loss": 2.7105,
|
2438 |
+
"step": 2025
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.82,
|
2442 |
+
"learning_rate": 5e-05,
|
2443 |
+
"loss": 2.4789,
|
2444 |
+
"step": 2030
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 0.82,
|
2448 |
+
"learning_rate": 5e-05,
|
2449 |
+
"loss": 2.587,
|
2450 |
+
"step": 2035
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 0.83,
|
2454 |
+
"learning_rate": 5e-05,
|
2455 |
+
"loss": 2.7408,
|
2456 |
+
"step": 2040
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 0.83,
|
2460 |
+
"learning_rate": 5e-05,
|
2461 |
+
"loss": 2.777,
|
2462 |
+
"step": 2045
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 0.83,
|
2466 |
+
"learning_rate": 5e-05,
|
2467 |
+
"loss": 2.6372,
|
2468 |
+
"step": 2050
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 0.83,
|
2472 |
+
"learning_rate": 5e-05,
|
2473 |
+
"loss": 2.6225,
|
2474 |
+
"step": 2055
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.83,
|
2478 |
+
"learning_rate": 5e-05,
|
2479 |
+
"loss": 2.4768,
|
2480 |
+
"step": 2060
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.84,
|
2484 |
+
"learning_rate": 5e-05,
|
2485 |
+
"loss": 2.7418,
|
2486 |
+
"step": 2065
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 0.84,
|
2490 |
+
"learning_rate": 5e-05,
|
2491 |
+
"loss": 2.758,
|
2492 |
+
"step": 2070
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 0.84,
|
2496 |
+
"learning_rate": 5e-05,
|
2497 |
+
"loss": 2.6905,
|
2498 |
+
"step": 2075
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 0.84,
|
2502 |
+
"learning_rate": 5e-05,
|
2503 |
+
"loss": 2.8158,
|
2504 |
+
"step": 2080
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 0.84,
|
2508 |
+
"learning_rate": 5e-05,
|
2509 |
+
"loss": 2.809,
|
2510 |
+
"step": 2085
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 0.85,
|
2514 |
+
"learning_rate": 5e-05,
|
2515 |
+
"loss": 2.7938,
|
2516 |
+
"step": 2090
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.85,
|
2520 |
+
"learning_rate": 5e-05,
|
2521 |
+
"loss": 2.6229,
|
2522 |
+
"step": 2095
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.85,
|
2526 |
+
"learning_rate": 5e-05,
|
2527 |
+
"loss": 2.6269,
|
2528 |
+
"step": 2100
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 0.85,
|
2532 |
+
"learning_rate": 5e-05,
|
2533 |
+
"loss": 2.6908,
|
2534 |
+
"step": 2105
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 0.85,
|
2538 |
+
"learning_rate": 5e-05,
|
2539 |
+
"loss": 2.7486,
|
2540 |
+
"step": 2110
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 0.86,
|
2544 |
+
"learning_rate": 5e-05,
|
2545 |
+
"loss": 2.7088,
|
2546 |
+
"step": 2115
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 0.86,
|
2550 |
+
"learning_rate": 5e-05,
|
2551 |
+
"loss": 2.5786,
|
2552 |
+
"step": 2120
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 0.86,
|
2556 |
+
"learning_rate": 5e-05,
|
2557 |
+
"loss": 2.725,
|
2558 |
+
"step": 2125
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.86,
|
2562 |
+
"learning_rate": 5e-05,
|
2563 |
+
"loss": 2.6511,
|
2564 |
+
"step": 2130
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.86,
|
2568 |
+
"learning_rate": 5e-05,
|
2569 |
+
"loss": 2.4968,
|
2570 |
+
"step": 2135
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 0.87,
|
2574 |
+
"learning_rate": 5e-05,
|
2575 |
+
"loss": 2.7425,
|
2576 |
+
"step": 2140
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 0.87,
|
2580 |
+
"learning_rate": 5e-05,
|
2581 |
+
"loss": 2.5695,
|
2582 |
+
"step": 2145
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 0.87,
|
2586 |
+
"learning_rate": 5e-05,
|
2587 |
+
"loss": 2.5162,
|
2588 |
+
"step": 2150
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 0.87,
|
2592 |
+
"learning_rate": 5e-05,
|
2593 |
+
"loss": 2.504,
|
2594 |
+
"step": 2155
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 0.87,
|
2598 |
+
"learning_rate": 5e-05,
|
2599 |
+
"loss": 2.7378,
|
2600 |
+
"step": 2160
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.88,
|
2604 |
+
"learning_rate": 5e-05,
|
2605 |
+
"loss": 2.6437,
|
2606 |
+
"step": 2165
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.88,
|
2610 |
+
"learning_rate": 5e-05,
|
2611 |
+
"loss": 2.629,
|
2612 |
+
"step": 2170
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 0.88,
|
2616 |
+
"learning_rate": 5e-05,
|
2617 |
+
"loss": 2.5375,
|
2618 |
+
"step": 2175
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 0.88,
|
2622 |
+
"learning_rate": 5e-05,
|
2623 |
+
"loss": 2.7463,
|
2624 |
+
"step": 2180
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 0.88,
|
2628 |
+
"learning_rate": 5e-05,
|
2629 |
+
"loss": 2.5113,
|
2630 |
+
"step": 2185
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 0.89,
|
2634 |
+
"learning_rate": 5e-05,
|
2635 |
+
"loss": 2.7163,
|
2636 |
+
"step": 2190
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 0.89,
|
2640 |
+
"learning_rate": 5e-05,
|
2641 |
+
"loss": 2.8432,
|
2642 |
+
"step": 2195
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.89,
|
2646 |
+
"learning_rate": 5e-05,
|
2647 |
+
"loss": 2.7086,
|
2648 |
+
"step": 2200
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.89,
|
2652 |
+
"learning_rate": 5e-05,
|
2653 |
+
"loss": 2.784,
|
2654 |
+
"step": 2205
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 0.89,
|
2658 |
+
"learning_rate": 5e-05,
|
2659 |
+
"loss": 2.7021,
|
2660 |
+
"step": 2210
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 0.9,
|
2664 |
+
"learning_rate": 5e-05,
|
2665 |
+
"loss": 2.6244,
|
2666 |
+
"step": 2215
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 0.9,
|
2670 |
+
"learning_rate": 5e-05,
|
2671 |
+
"loss": 2.633,
|
2672 |
+
"step": 2220
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 0.9,
|
2676 |
+
"learning_rate": 5e-05,
|
2677 |
+
"loss": 2.7068,
|
2678 |
+
"step": 2225
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 0.9,
|
2682 |
+
"learning_rate": 5e-05,
|
2683 |
+
"loss": 2.8057,
|
2684 |
+
"step": 2230
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.9,
|
2688 |
+
"learning_rate": 5e-05,
|
2689 |
+
"loss": 2.677,
|
2690 |
+
"step": 2235
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.91,
|
2694 |
+
"learning_rate": 5e-05,
|
2695 |
+
"loss": 2.7191,
|
2696 |
+
"step": 2240
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 0.91,
|
2700 |
+
"learning_rate": 5e-05,
|
2701 |
+
"loss": 2.7879,
|
2702 |
+
"step": 2245
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 0.91,
|
2706 |
+
"learning_rate": 5e-05,
|
2707 |
+
"loss": 2.7059,
|
2708 |
+
"step": 2250
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 0.91,
|
2712 |
+
"learning_rate": 5e-05,
|
2713 |
+
"loss": 2.7086,
|
2714 |
+
"step": 2255
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 0.91,
|
2718 |
+
"learning_rate": 5e-05,
|
2719 |
+
"loss": 2.6386,
|
2720 |
+
"step": 2260
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 0.92,
|
2724 |
+
"learning_rate": 5e-05,
|
2725 |
+
"loss": 2.6557,
|
2726 |
+
"step": 2265
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.92,
|
2730 |
+
"learning_rate": 5e-05,
|
2731 |
+
"loss": 2.7518,
|
2732 |
+
"step": 2270
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.92,
|
2736 |
+
"learning_rate": 5e-05,
|
2737 |
+
"loss": 2.6355,
|
2738 |
+
"step": 2275
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 0.92,
|
2742 |
+
"learning_rate": 5e-05,
|
2743 |
+
"loss": 2.6018,
|
2744 |
+
"step": 2280
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 0.92,
|
2748 |
+
"learning_rate": 5e-05,
|
2749 |
+
"loss": 2.5666,
|
2750 |
+
"step": 2285
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 0.93,
|
2754 |
+
"learning_rate": 5e-05,
|
2755 |
+
"loss": 2.7285,
|
2756 |
+
"step": 2290
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 0.93,
|
2760 |
+
"learning_rate": 5e-05,
|
2761 |
+
"loss": 2.6315,
|
2762 |
+
"step": 2295
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 0.93,
|
2766 |
+
"learning_rate": 5e-05,
|
2767 |
+
"loss": 2.7684,
|
2768 |
+
"step": 2300
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.93,
|
2772 |
+
"learning_rate": 5e-05,
|
2773 |
+
"loss": 2.8144,
|
2774 |
+
"step": 2305
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.93,
|
2778 |
+
"learning_rate": 5e-05,
|
2779 |
+
"loss": 2.6321,
|
2780 |
+
"step": 2310
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 0.94,
|
2784 |
+
"learning_rate": 5e-05,
|
2785 |
+
"loss": 2.534,
|
2786 |
+
"step": 2315
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 0.94,
|
2790 |
+
"learning_rate": 5e-05,
|
2791 |
+
"loss": 2.6426,
|
2792 |
+
"step": 2320
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 0.94,
|
2796 |
+
"learning_rate": 5e-05,
|
2797 |
+
"loss": 2.7651,
|
2798 |
+
"step": 2325
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 0.94,
|
2802 |
+
"learning_rate": 5e-05,
|
2803 |
+
"loss": 2.9408,
|
2804 |
+
"step": 2330
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 0.94,
|
2808 |
+
"learning_rate": 5e-05,
|
2809 |
+
"loss": 2.5735,
|
2810 |
+
"step": 2335
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.95,
|
2814 |
+
"learning_rate": 5e-05,
|
2815 |
+
"loss": 2.7254,
|
2816 |
+
"step": 2340
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.95,
|
2820 |
+
"learning_rate": 5e-05,
|
2821 |
+
"loss": 2.5567,
|
2822 |
+
"step": 2345
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 0.95,
|
2826 |
+
"learning_rate": 5e-05,
|
2827 |
+
"loss": 2.6888,
|
2828 |
+
"step": 2350
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 0.95,
|
2832 |
+
"learning_rate": 5e-05,
|
2833 |
+
"loss": 2.615,
|
2834 |
+
"step": 2355
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 0.95,
|
2838 |
+
"learning_rate": 5e-05,
|
2839 |
+
"loss": 2.7708,
|
2840 |
+
"step": 2360
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 0.96,
|
2844 |
+
"learning_rate": 5e-05,
|
2845 |
+
"loss": 2.6665,
|
2846 |
+
"step": 2365
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 0.96,
|
2850 |
+
"learning_rate": 5e-05,
|
2851 |
+
"loss": 2.5748,
|
2852 |
+
"step": 2370
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.96,
|
2856 |
+
"learning_rate": 5e-05,
|
2857 |
+
"loss": 2.6752,
|
2858 |
+
"step": 2375
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.96,
|
2862 |
+
"learning_rate": 5e-05,
|
2863 |
+
"loss": 2.5538,
|
2864 |
+
"step": 2380
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 0.96,
|
2868 |
+
"learning_rate": 5e-05,
|
2869 |
+
"loss": 2.7701,
|
2870 |
+
"step": 2385
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 0.97,
|
2874 |
+
"learning_rate": 5e-05,
|
2875 |
+
"loss": 2.7305,
|
2876 |
+
"step": 2390
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 0.97,
|
2880 |
+
"learning_rate": 5e-05,
|
2881 |
+
"loss": 2.7094,
|
2882 |
+
"step": 2395
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 0.97,
|
2886 |
+
"learning_rate": 5e-05,
|
2887 |
+
"loss": 2.9193,
|
2888 |
+
"step": 2400
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 0.97,
|
2892 |
+
"learning_rate": 5e-05,
|
2893 |
+
"loss": 2.6647,
|
2894 |
+
"step": 2405
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.98,
|
2898 |
+
"learning_rate": 5e-05,
|
2899 |
+
"loss": 2.6341,
|
2900 |
+
"step": 2410
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.98,
|
2904 |
+
"learning_rate": 5e-05,
|
2905 |
+
"loss": 2.4908,
|
2906 |
+
"step": 2415
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 0.98,
|
2910 |
+
"learning_rate": 5e-05,
|
2911 |
+
"loss": 2.5294,
|
2912 |
+
"step": 2420
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 0.98,
|
2916 |
+
"learning_rate": 5e-05,
|
2917 |
+
"loss": 2.461,
|
2918 |
+
"step": 2425
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 0.98,
|
2922 |
+
"learning_rate": 5e-05,
|
2923 |
+
"loss": 2.6605,
|
2924 |
+
"step": 2430
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 0.99,
|
2928 |
+
"learning_rate": 5e-05,
|
2929 |
+
"loss": 2.5215,
|
2930 |
+
"step": 2435
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 0.99,
|
2934 |
+
"learning_rate": 5e-05,
|
2935 |
+
"loss": 2.539,
|
2936 |
+
"step": 2440
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.99,
|
2940 |
+
"learning_rate": 5e-05,
|
2941 |
+
"loss": 2.644,
|
2942 |
+
"step": 2445
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.99,
|
2946 |
+
"learning_rate": 5e-05,
|
2947 |
+
"loss": 2.5958,
|
2948 |
+
"step": 2450
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 0.99,
|
2952 |
+
"learning_rate": 5e-05,
|
2953 |
+
"loss": 2.528,
|
2954 |
+
"step": 2455
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 1.0,
|
2958 |
+
"learning_rate": 5e-05,
|
2959 |
+
"loss": 2.6468,
|
2960 |
+
"step": 2460
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 1.0,
|
2964 |
+
"learning_rate": 5e-05,
|
2965 |
+
"loss": 2.6027,
|
2966 |
+
"step": 2465
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 1.0,
|
2970 |
+
"learning_rate": 5e-05,
|
2971 |
+
"loss": 2.4891,
|
2972 |
+
"step": 2470
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 1.0,
|
2976 |
+
"learning_rate": 5e-05,
|
2977 |
+
"loss": 2.7302,
|
2978 |
+
"step": 2475
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 1.0,
|
2982 |
+
"learning_rate": 5e-05,
|
2983 |
+
"loss": 2.2587,
|
2984 |
+
"step": 2480
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 1.01,
|
2988 |
+
"learning_rate": 5e-05,
|
2989 |
+
"loss": 2.3727,
|
2990 |
+
"step": 2485
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 1.01,
|
2994 |
+
"learning_rate": 5e-05,
|
2995 |
+
"loss": 2.2232,
|
2996 |
+
"step": 2490
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 1.01,
|
3000 |
+
"learning_rate": 5e-05,
|
3001 |
+
"loss": 2.2597,
|
3002 |
+
"step": 2495
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 1.01,
|
3006 |
+
"learning_rate": 5e-05,
|
3007 |
+
"loss": 2.0625,
|
3008 |
+
"step": 2500
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 1.01,
|
3012 |
+
"learning_rate": 5e-05,
|
3013 |
+
"loss": 2.2327,
|
3014 |
+
"step": 2505
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 1.02,
|
3018 |
+
"learning_rate": 5e-05,
|
3019 |
+
"loss": 2.0604,
|
3020 |
+
"step": 2510
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 1.02,
|
3024 |
+
"learning_rate": 5e-05,
|
3025 |
+
"loss": 2.0927,
|
3026 |
+
"step": 2515
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 1.02,
|
3030 |
+
"learning_rate": 5e-05,
|
3031 |
+
"loss": 2.2176,
|
3032 |
+
"step": 2520
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 1.02,
|
3036 |
+
"learning_rate": 5e-05,
|
3037 |
+
"loss": 2.2972,
|
3038 |
+
"step": 2525
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 1.02,
|
3042 |
+
"learning_rate": 5e-05,
|
3043 |
+
"loss": 2.1105,
|
3044 |
+
"step": 2530
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 1.03,
|
3048 |
+
"learning_rate": 5e-05,
|
3049 |
+
"loss": 2.1953,
|
3050 |
+
"step": 2535
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 1.03,
|
3054 |
+
"learning_rate": 5e-05,
|
3055 |
+
"loss": 2.4188,
|
3056 |
+
"step": 2540
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 1.03,
|
3060 |
+
"learning_rate": 5e-05,
|
3061 |
+
"loss": 2.2246,
|
3062 |
+
"step": 2545
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 1.03,
|
3066 |
+
"learning_rate": 5e-05,
|
3067 |
+
"loss": 2.3411,
|
3068 |
+
"step": 2550
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 1.03,
|
3072 |
+
"learning_rate": 5e-05,
|
3073 |
+
"loss": 2.2848,
|
3074 |
+
"step": 2555
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 1.04,
|
3078 |
+
"learning_rate": 5e-05,
|
3079 |
+
"loss": 2.0621,
|
3080 |
+
"step": 2560
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 1.04,
|
3084 |
+
"learning_rate": 5e-05,
|
3085 |
+
"loss": 2.3601,
|
3086 |
+
"step": 2565
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 1.04,
|
3090 |
+
"learning_rate": 5e-05,
|
3091 |
+
"loss": 2.0717,
|
3092 |
+
"step": 2570
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 1.04,
|
3096 |
+
"learning_rate": 5e-05,
|
3097 |
+
"loss": 2.0666,
|
3098 |
+
"step": 2575
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 1.04,
|
3102 |
+
"learning_rate": 5e-05,
|
3103 |
+
"loss": 2.157,
|
3104 |
+
"step": 2580
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 1.05,
|
3108 |
+
"learning_rate": 5e-05,
|
3109 |
+
"loss": 2.2869,
|
3110 |
+
"step": 2585
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 1.05,
|
3114 |
+
"learning_rate": 5e-05,
|
3115 |
+
"loss": 2.2177,
|
3116 |
+
"step": 2590
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 1.05,
|
3120 |
+
"learning_rate": 5e-05,
|
3121 |
+
"loss": 2.2843,
|
3122 |
+
"step": 2595
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 1.05,
|
3126 |
+
"learning_rate": 5e-05,
|
3127 |
+
"loss": 2.1964,
|
3128 |
+
"step": 2600
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 1.05,
|
3132 |
+
"learning_rate": 5e-05,
|
3133 |
+
"loss": 2.2299,
|
3134 |
+
"step": 2605
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 1.06,
|
3138 |
+
"learning_rate": 5e-05,
|
3139 |
+
"loss": 2.1429,
|
3140 |
+
"step": 2610
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 1.06,
|
3144 |
+
"learning_rate": 5e-05,
|
3145 |
+
"loss": 2.1783,
|
3146 |
+
"step": 2615
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 1.06,
|
3150 |
+
"learning_rate": 5e-05,
|
3151 |
+
"loss": 2.0898,
|
3152 |
+
"step": 2620
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 1.06,
|
3156 |
+
"learning_rate": 5e-05,
|
3157 |
+
"loss": 2.2693,
|
3158 |
+
"step": 2625
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 1.06,
|
3162 |
+
"learning_rate": 5e-05,
|
3163 |
+
"loss": 2.2216,
|
3164 |
+
"step": 2630
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 1.07,
|
3168 |
+
"learning_rate": 5e-05,
|
3169 |
+
"loss": 2.1387,
|
3170 |
+
"step": 2635
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 1.07,
|
3174 |
+
"learning_rate": 5e-05,
|
3175 |
+
"loss": 2.2065,
|
3176 |
+
"step": 2640
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 1.07,
|
3180 |
+
"learning_rate": 5e-05,
|
3181 |
+
"loss": 2.0899,
|
3182 |
+
"step": 2645
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 1.07,
|
3186 |
+
"learning_rate": 5e-05,
|
3187 |
+
"loss": 2.1705,
|
3188 |
+
"step": 2650
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 1.07,
|
3192 |
+
"learning_rate": 5e-05,
|
3193 |
+
"loss": 2.1863,
|
3194 |
+
"step": 2655
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 1.08,
|
3198 |
+
"learning_rate": 5e-05,
|
3199 |
+
"loss": 2.2563,
|
3200 |
+
"step": 2660
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 1.08,
|
3204 |
+
"learning_rate": 5e-05,
|
3205 |
+
"loss": 2.2669,
|
3206 |
+
"step": 2665
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 1.08,
|
3210 |
+
"learning_rate": 5e-05,
|
3211 |
+
"loss": 2.2752,
|
3212 |
+
"step": 2670
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 1.08,
|
3216 |
+
"learning_rate": 5e-05,
|
3217 |
+
"loss": 2.3229,
|
3218 |
+
"step": 2675
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 1.08,
|
3222 |
+
"learning_rate": 5e-05,
|
3223 |
+
"loss": 2.1955,
|
3224 |
+
"step": 2680
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 1.09,
|
3228 |
+
"learning_rate": 5e-05,
|
3229 |
+
"loss": 2.1868,
|
3230 |
+
"step": 2685
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 1.09,
|
3234 |
+
"learning_rate": 5e-05,
|
3235 |
+
"loss": 2.3266,
|
3236 |
+
"step": 2690
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 1.09,
|
3240 |
+
"learning_rate": 5e-05,
|
3241 |
+
"loss": 2.1649,
|
3242 |
+
"step": 2695
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 1.09,
|
3246 |
+
"learning_rate": 5e-05,
|
3247 |
+
"loss": 2.1767,
|
3248 |
+
"step": 2700
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 1.09,
|
3252 |
+
"learning_rate": 5e-05,
|
3253 |
+
"loss": 2.2341,
|
3254 |
+
"step": 2705
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 1.1,
|
3258 |
+
"learning_rate": 5e-05,
|
3259 |
+
"loss": 2.2082,
|
3260 |
+
"step": 2710
|
3261 |
+
},
|
3262 |
+
{
|
3263 |
+
"epoch": 1.1,
|
3264 |
+
"learning_rate": 5e-05,
|
3265 |
+
"loss": 2.1698,
|
3266 |
+
"step": 2715
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 1.1,
|
3270 |
+
"learning_rate": 5e-05,
|
3271 |
+
"loss": 2.1964,
|
3272 |
+
"step": 2720
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 1.1,
|
3276 |
+
"learning_rate": 5e-05,
|
3277 |
+
"loss": 2.2899,
|
3278 |
+
"step": 2725
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 1.1,
|
3282 |
+
"learning_rate": 5e-05,
|
3283 |
+
"loss": 2.2172,
|
3284 |
+
"step": 2730
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 1.11,
|
3288 |
+
"learning_rate": 5e-05,
|
3289 |
+
"loss": 2.1917,
|
3290 |
+
"step": 2735
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 1.11,
|
3294 |
+
"learning_rate": 5e-05,
|
3295 |
+
"loss": 2.2461,
|
3296 |
+
"step": 2740
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 1.11,
|
3300 |
+
"learning_rate": 5e-05,
|
3301 |
+
"loss": 2.143,
|
3302 |
+
"step": 2745
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 1.11,
|
3306 |
+
"learning_rate": 5e-05,
|
3307 |
+
"loss": 2.1732,
|
3308 |
+
"step": 2750
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 1.11,
|
3312 |
+
"learning_rate": 5e-05,
|
3313 |
+
"loss": 2.2312,
|
3314 |
+
"step": 2755
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 1.12,
|
3318 |
+
"learning_rate": 5e-05,
|
3319 |
+
"loss": 2.1724,
|
3320 |
+
"step": 2760
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 1.12,
|
3324 |
+
"learning_rate": 5e-05,
|
3325 |
+
"loss": 2.1024,
|
3326 |
+
"step": 2765
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 1.12,
|
3330 |
+
"learning_rate": 5e-05,
|
3331 |
+
"loss": 2.234,
|
3332 |
+
"step": 2770
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 1.12,
|
3336 |
+
"learning_rate": 5e-05,
|
3337 |
+
"loss": 2.2232,
|
3338 |
+
"step": 2775
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 1.13,
|
3342 |
+
"learning_rate": 5e-05,
|
3343 |
+
"loss": 2.1624,
|
3344 |
+
"step": 2780
|
3345 |
+
},
|
3346 |
+
{
|
3347 |
+
"epoch": 1.13,
|
3348 |
+
"learning_rate": 5e-05,
|
3349 |
+
"loss": 2.1253,
|
3350 |
+
"step": 2785
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 1.13,
|
3354 |
+
"learning_rate": 5e-05,
|
3355 |
+
"loss": 2.2269,
|
3356 |
+
"step": 2790
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 1.13,
|
3360 |
+
"learning_rate": 5e-05,
|
3361 |
+
"loss": 2.3,
|
3362 |
+
"step": 2795
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 1.13,
|
3366 |
+
"learning_rate": 5e-05,
|
3367 |
+
"loss": 2.2228,
|
3368 |
+
"step": 2800
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 1.14,
|
3372 |
+
"learning_rate": 5e-05,
|
3373 |
+
"loss": 2.2687,
|
3374 |
+
"step": 2805
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 1.14,
|
3378 |
+
"learning_rate": 5e-05,
|
3379 |
+
"loss": 2.0817,
|
3380 |
+
"step": 2810
|
3381 |
+
},
|
3382 |
+
{
|
3383 |
+
"epoch": 1.14,
|
3384 |
+
"learning_rate": 5e-05,
|
3385 |
+
"loss": 2.3083,
|
3386 |
+
"step": 2815
|
3387 |
+
},
|
3388 |
+
{
|
3389 |
+
"epoch": 1.14,
|
3390 |
+
"learning_rate": 5e-05,
|
3391 |
+
"loss": 2.1453,
|
3392 |
+
"step": 2820
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 1.14,
|
3396 |
+
"learning_rate": 5e-05,
|
3397 |
+
"loss": 2.229,
|
3398 |
+
"step": 2825
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 1.15,
|
3402 |
+
"learning_rate": 5e-05,
|
3403 |
+
"loss": 2.0037,
|
3404 |
+
"step": 2830
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 1.15,
|
3408 |
+
"learning_rate": 5e-05,
|
3409 |
+
"loss": 2.2472,
|
3410 |
+
"step": 2835
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 1.15,
|
3414 |
+
"learning_rate": 5e-05,
|
3415 |
+
"loss": 2.2924,
|
3416 |
+
"step": 2840
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 1.15,
|
3420 |
+
"learning_rate": 5e-05,
|
3421 |
+
"loss": 2.3999,
|
3422 |
+
"step": 2845
|
3423 |
+
},
|
3424 |
+
{
|
3425 |
+
"epoch": 1.15,
|
3426 |
+
"learning_rate": 5e-05,
|
3427 |
+
"loss": 2.2672,
|
3428 |
+
"step": 2850
|
3429 |
+
},
|
3430 |
+
{
|
3431 |
+
"epoch": 1.16,
|
3432 |
+
"learning_rate": 5e-05,
|
3433 |
+
"loss": 2.2466,
|
3434 |
+
"step": 2855
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 1.16,
|
3438 |
+
"learning_rate": 5e-05,
|
3439 |
+
"loss": 2.3562,
|
3440 |
+
"step": 2860
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 1.16,
|
3444 |
+
"learning_rate": 5e-05,
|
3445 |
+
"loss": 2.3754,
|
3446 |
+
"step": 2865
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 1.16,
|
3450 |
+
"learning_rate": 5e-05,
|
3451 |
+
"loss": 2.1568,
|
3452 |
+
"step": 2870
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 1.16,
|
3456 |
+
"learning_rate": 5e-05,
|
3457 |
+
"loss": 2.2053,
|
3458 |
+
"step": 2875
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 1.17,
|
3462 |
+
"learning_rate": 5e-05,
|
3463 |
+
"loss": 2.2557,
|
3464 |
+
"step": 2880
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 1.17,
|
3468 |
+
"learning_rate": 5e-05,
|
3469 |
+
"loss": 2.2292,
|
3470 |
+
"step": 2885
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 1.17,
|
3474 |
+
"learning_rate": 5e-05,
|
3475 |
+
"loss": 2.1612,
|
3476 |
+
"step": 2890
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 1.17,
|
3480 |
+
"learning_rate": 5e-05,
|
3481 |
+
"loss": 2.1222,
|
3482 |
+
"step": 2895
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 1.17,
|
3486 |
+
"learning_rate": 5e-05,
|
3487 |
+
"loss": 2.3077,
|
3488 |
+
"step": 2900
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 1.18,
|
3492 |
+
"learning_rate": 5e-05,
|
3493 |
+
"loss": 2.2526,
|
3494 |
+
"step": 2905
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 1.18,
|
3498 |
+
"learning_rate": 5e-05,
|
3499 |
+
"loss": 2.3626,
|
3500 |
+
"step": 2910
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 1.18,
|
3504 |
+
"learning_rate": 5e-05,
|
3505 |
+
"loss": 2.2218,
|
3506 |
+
"step": 2915
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 1.18,
|
3510 |
+
"learning_rate": 5e-05,
|
3511 |
+
"loss": 2.2083,
|
3512 |
+
"step": 2920
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 1.18,
|
3516 |
+
"learning_rate": 5e-05,
|
3517 |
+
"loss": 2.156,
|
3518 |
+
"step": 2925
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 1.19,
|
3522 |
+
"learning_rate": 5e-05,
|
3523 |
+
"loss": 2.2767,
|
3524 |
+
"step": 2930
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 1.19,
|
3528 |
+
"learning_rate": 5e-05,
|
3529 |
+
"loss": 2.289,
|
3530 |
+
"step": 2935
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 1.19,
|
3534 |
+
"learning_rate": 5e-05,
|
3535 |
+
"loss": 2.2848,
|
3536 |
+
"step": 2940
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 1.19,
|
3540 |
+
"learning_rate": 5e-05,
|
3541 |
+
"loss": 2.276,
|
3542 |
+
"step": 2945
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 1.19,
|
3546 |
+
"learning_rate": 5e-05,
|
3547 |
+
"loss": 2.2919,
|
3548 |
+
"step": 2950
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 1.2,
|
3552 |
+
"learning_rate": 5e-05,
|
3553 |
+
"loss": 2.2985,
|
3554 |
+
"step": 2955
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 1.2,
|
3558 |
+
"learning_rate": 5e-05,
|
3559 |
+
"loss": 2.2449,
|
3560 |
+
"step": 2960
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 1.2,
|
3564 |
+
"learning_rate": 5e-05,
|
3565 |
+
"loss": 2.2573,
|
3566 |
+
"step": 2965
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 1.2,
|
3570 |
+
"learning_rate": 5e-05,
|
3571 |
+
"loss": 2.2188,
|
3572 |
+
"step": 2970
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 1.2,
|
3576 |
+
"learning_rate": 5e-05,
|
3577 |
+
"loss": 2.3185,
|
3578 |
+
"step": 2975
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 1.21,
|
3582 |
+
"learning_rate": 5e-05,
|
3583 |
+
"loss": 2.1787,
|
3584 |
+
"step": 2980
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 1.21,
|
3588 |
+
"learning_rate": 5e-05,
|
3589 |
+
"loss": 2.311,
|
3590 |
+
"step": 2985
|
3591 |
+
},
|
3592 |
+
{
|
3593 |
+
"epoch": 1.21,
|
3594 |
+
"learning_rate": 5e-05,
|
3595 |
+
"loss": 2.2696,
|
3596 |
+
"step": 2990
|
3597 |
+
},
|
3598 |
+
{
|
3599 |
+
"epoch": 1.21,
|
3600 |
+
"learning_rate": 5e-05,
|
3601 |
+
"loss": 2.1472,
|
3602 |
+
"step": 2995
|
3603 |
+
},
|
3604 |
+
{
|
3605 |
+
"epoch": 1.21,
|
3606 |
+
"learning_rate": 5e-05,
|
3607 |
+
"loss": 2.371,
|
3608 |
+
"step": 3000
|
3609 |
+
},
|
3610 |
+
{
|
3611 |
+
"epoch": 1.22,
|
3612 |
+
"learning_rate": 5e-05,
|
3613 |
+
"loss": 2.2385,
|
3614 |
+
"step": 3005
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 1.22,
|
3618 |
+
"learning_rate": 5e-05,
|
3619 |
+
"loss": 2.213,
|
3620 |
+
"step": 3010
|
3621 |
+
},
|
3622 |
+
{
|
3623 |
+
"epoch": 1.22,
|
3624 |
+
"learning_rate": 5e-05,
|
3625 |
+
"loss": 2.2276,
|
3626 |
+
"step": 3015
|
3627 |
+
},
|
3628 |
+
{
|
3629 |
+
"epoch": 1.22,
|
3630 |
+
"learning_rate": 5e-05,
|
3631 |
+
"loss": 2.3147,
|
3632 |
+
"step": 3020
|
3633 |
+
},
|
3634 |
+
{
|
3635 |
+
"epoch": 1.22,
|
3636 |
+
"learning_rate": 5e-05,
|
3637 |
+
"loss": 2.2818,
|
3638 |
+
"step": 3025
|
3639 |
+
},
|
3640 |
+
{
|
3641 |
+
"epoch": 1.23,
|
3642 |
+
"learning_rate": 5e-05,
|
3643 |
+
"loss": 2.3763,
|
3644 |
+
"step": 3030
|
3645 |
+
},
|
3646 |
+
{
|
3647 |
+
"epoch": 1.23,
|
3648 |
+
"learning_rate": 5e-05,
|
3649 |
+
"loss": 2.2653,
|
3650 |
+
"step": 3035
|
3651 |
+
},
|
3652 |
+
{
|
3653 |
+
"epoch": 1.23,
|
3654 |
+
"learning_rate": 5e-05,
|
3655 |
+
"loss": 2.1061,
|
3656 |
+
"step": 3040
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 1.23,
|
3660 |
+
"learning_rate": 5e-05,
|
3661 |
+
"loss": 2.1532,
|
3662 |
+
"step": 3045
|
3663 |
+
},
|
3664 |
+
{
|
3665 |
+
"epoch": 1.23,
|
3666 |
+
"learning_rate": 5e-05,
|
3667 |
+
"loss": 2.2831,
|
3668 |
+
"step": 3050
|
3669 |
+
},
|
3670 |
+
{
|
3671 |
+
"epoch": 1.24,
|
3672 |
+
"learning_rate": 5e-05,
|
3673 |
+
"loss": 2.284,
|
3674 |
+
"step": 3055
|
3675 |
+
},
|
3676 |
+
{
|
3677 |
+
"epoch": 1.24,
|
3678 |
+
"learning_rate": 5e-05,
|
3679 |
+
"loss": 2.316,
|
3680 |
+
"step": 3060
|
3681 |
+
},
|
3682 |
+
{
|
3683 |
+
"epoch": 1.24,
|
3684 |
+
"learning_rate": 5e-05,
|
3685 |
+
"loss": 2.2093,
|
3686 |
+
"step": 3065
|
3687 |
+
},
|
3688 |
+
{
|
3689 |
+
"epoch": 1.24,
|
3690 |
+
"learning_rate": 5e-05,
|
3691 |
+
"loss": 2.3092,
|
3692 |
+
"step": 3070
|
3693 |
+
},
|
3694 |
+
{
|
3695 |
+
"epoch": 1.24,
|
3696 |
+
"learning_rate": 5e-05,
|
3697 |
+
"loss": 2.121,
|
3698 |
+
"step": 3075
|
3699 |
+
},
|
3700 |
+
{
|
3701 |
+
"epoch": 1.25,
|
3702 |
+
"learning_rate": 5e-05,
|
3703 |
+
"loss": 2.1213,
|
3704 |
+
"step": 3080
|
3705 |
+
},
|
3706 |
+
{
|
3707 |
+
"epoch": 1.25,
|
3708 |
+
"learning_rate": 5e-05,
|
3709 |
+
"loss": 2.2853,
|
3710 |
+
"step": 3085
|
3711 |
+
},
|
3712 |
+
{
|
3713 |
+
"epoch": 1.25,
|
3714 |
+
"learning_rate": 5e-05,
|
3715 |
+
"loss": 2.2103,
|
3716 |
+
"step": 3090
|
3717 |
+
},
|
3718 |
+
{
|
3719 |
+
"epoch": 1.25,
|
3720 |
+
"learning_rate": 5e-05,
|
3721 |
+
"loss": 2.1558,
|
3722 |
+
"step": 3095
|
3723 |
+
},
|
3724 |
+
{
|
3725 |
+
"epoch": 1.25,
|
3726 |
+
"learning_rate": 5e-05,
|
3727 |
+
"loss": 2.3642,
|
3728 |
+
"step": 3100
|
3729 |
+
},
|
3730 |
+
{
|
3731 |
+
"epoch": 1.26,
|
3732 |
+
"learning_rate": 5e-05,
|
3733 |
+
"loss": 2.1975,
|
3734 |
+
"step": 3105
|
3735 |
+
},
|
3736 |
+
{
|
3737 |
+
"epoch": 1.26,
|
3738 |
+
"learning_rate": 5e-05,
|
3739 |
+
"loss": 2.3263,
|
3740 |
+
"step": 3110
|
3741 |
+
},
|
3742 |
+
{
|
3743 |
+
"epoch": 1.26,
|
3744 |
+
"learning_rate": 5e-05,
|
3745 |
+
"loss": 2.2045,
|
3746 |
+
"step": 3115
|
3747 |
+
},
|
3748 |
+
{
|
3749 |
+
"epoch": 1.26,
|
3750 |
+
"learning_rate": 5e-05,
|
3751 |
+
"loss": 2.2657,
|
3752 |
+
"step": 3120
|
3753 |
+
},
|
3754 |
+
{
|
3755 |
+
"epoch": 1.26,
|
3756 |
+
"learning_rate": 5e-05,
|
3757 |
+
"loss": 2.1824,
|
3758 |
+
"step": 3125
|
3759 |
+
},
|
3760 |
+
{
|
3761 |
+
"epoch": 1.27,
|
3762 |
+
"learning_rate": 5e-05,
|
3763 |
+
"loss": 2.2344,
|
3764 |
+
"step": 3130
|
3765 |
+
},
|
3766 |
+
{
|
3767 |
+
"epoch": 1.27,
|
3768 |
+
"learning_rate": 5e-05,
|
3769 |
+
"loss": 2.3884,
|
3770 |
+
"step": 3135
|
3771 |
+
},
|
3772 |
+
{
|
3773 |
+
"epoch": 1.27,
|
3774 |
+
"learning_rate": 5e-05,
|
3775 |
+
"loss": 2.1757,
|
3776 |
+
"step": 3140
|
3777 |
+
},
|
3778 |
+
{
|
3779 |
+
"epoch": 1.27,
|
3780 |
+
"learning_rate": 5e-05,
|
3781 |
+
"loss": 2.2789,
|
3782 |
+
"step": 3145
|
3783 |
+
},
|
3784 |
+
{
|
3785 |
+
"epoch": 1.27,
|
3786 |
+
"learning_rate": 5e-05,
|
3787 |
+
"loss": 2.3038,
|
3788 |
+
"step": 3150
|
3789 |
+
},
|
3790 |
+
{
|
3791 |
+
"epoch": 1.28,
|
3792 |
+
"learning_rate": 5e-05,
|
3793 |
+
"loss": 2.2446,
|
3794 |
+
"step": 3155
|
3795 |
+
},
|
3796 |
+
{
|
3797 |
+
"epoch": 1.28,
|
3798 |
+
"learning_rate": 5e-05,
|
3799 |
+
"loss": 2.1975,
|
3800 |
+
"step": 3160
|
3801 |
+
},
|
3802 |
+
{
|
3803 |
+
"epoch": 1.28,
|
3804 |
+
"learning_rate": 5e-05,
|
3805 |
+
"loss": 2.4234,
|
3806 |
+
"step": 3165
|
3807 |
+
},
|
3808 |
+
{
|
3809 |
+
"epoch": 1.28,
|
3810 |
+
"learning_rate": 5e-05,
|
3811 |
+
"loss": 2.2307,
|
3812 |
+
"step": 3170
|
3813 |
+
},
|
3814 |
+
{
|
3815 |
+
"epoch": 1.28,
|
3816 |
+
"learning_rate": 5e-05,
|
3817 |
+
"loss": 2.1857,
|
3818 |
+
"step": 3175
|
3819 |
+
},
|
3820 |
+
{
|
3821 |
+
"epoch": 1.29,
|
3822 |
+
"learning_rate": 5e-05,
|
3823 |
+
"loss": 2.2006,
|
3824 |
+
"step": 3180
|
3825 |
+
},
|
3826 |
+
{
|
3827 |
+
"epoch": 1.29,
|
3828 |
+
"learning_rate": 5e-05,
|
3829 |
+
"loss": 2.2475,
|
3830 |
+
"step": 3185
|
3831 |
+
},
|
3832 |
+
{
|
3833 |
+
"epoch": 1.29,
|
3834 |
+
"learning_rate": 5e-05,
|
3835 |
+
"loss": 2.3465,
|
3836 |
+
"step": 3190
|
3837 |
+
},
|
3838 |
+
{
|
3839 |
+
"epoch": 1.29,
|
3840 |
+
"learning_rate": 5e-05,
|
3841 |
+
"loss": 2.1186,
|
3842 |
+
"step": 3195
|
3843 |
+
},
|
3844 |
+
{
|
3845 |
+
"epoch": 1.29,
|
3846 |
+
"learning_rate": 5e-05,
|
3847 |
+
"loss": 2.2803,
|
3848 |
+
"step": 3200
|
3849 |
+
}
|
3850 |
+
],
|
3851 |
+
"max_steps": 4942,
|
3852 |
+
"num_train_epochs": 2,
|
3853 |
+
"total_flos": 3.8026776806424576e+17,
|
3854 |
+
"trial_name": null,
|
3855 |
+
"trial_params": null
|
3856 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09f5d04fb3754a0efdcfac1f31e2455f243c3bf11081d2bb3f0513c22a30ddef
|
3 |
+
size 4271
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
4 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
5 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
6 |
+
# application.
|
7 |
+
#
|
8 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import torch
|
12 |
+
import glob
|
13 |
+
import math
|
14 |
+
import os
|
15 |
+
import re
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
19 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
20 |
+
import deepspeed
|
21 |
+
from deepspeed.utils import logger
|
22 |
+
from deepspeed.checkpoint.constants import (DS_VERSION,
|
23 |
+
OPTIMIZER_STATE_DICT,
|
24 |
+
PARAM_SHAPES,
|
25 |
+
SINGLE_PARTITION_OF_FP32_GROUPS,
|
26 |
+
FP32_FLAT_GROUPS,
|
27 |
+
ZERO_STAGE,
|
28 |
+
PARTITION_COUNT,
|
29 |
+
PARAM_SHAPES,
|
30 |
+
BUFFER_NAMES)
|
31 |
+
|
32 |
+
debug = 0
|
33 |
+
|
34 |
+
# load to cpu
|
35 |
+
device = torch.device('cpu')
|
36 |
+
|
37 |
+
|
38 |
+
def atoi(text):
|
39 |
+
return int(text) if text.isdigit() else text
|
40 |
+
|
41 |
+
|
42 |
+
def natural_keys(text):
|
43 |
+
'''
|
44 |
+
alist.sort(key=natural_keys) sorts in human order
|
45 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
46 |
+
(See Toothy's implementation in the comments)
|
47 |
+
'''
|
48 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
49 |
+
|
50 |
+
|
51 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
52 |
+
if not os.path.isdir(checkpoint_dir):
|
53 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
54 |
+
|
55 |
+
# there should be only one file
|
56 |
+
if zero_stage == 2:
|
57 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
58 |
+
elif zero_stage == 3:
|
59 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
60 |
+
|
61 |
+
if not os.path.exists(file):
|
62 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
63 |
+
|
64 |
+
return file
|
65 |
+
|
66 |
+
|
67 |
+
def get_optim_files(checkpoint_dir):
|
68 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
69 |
+
optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
|
70 |
+
"*_optim_states.pt")),
|
71 |
+
key=natural_keys)
|
72 |
+
|
73 |
+
if len(optim_files) == 0:
|
74 |
+
raise FileNotFoundError(
|
75 |
+
f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
|
76 |
+
|
77 |
+
return optim_files
|
78 |
+
|
79 |
+
|
80 |
+
def parse_model_state(file):
|
81 |
+
state_dict = torch.load(file, map_location=device)
|
82 |
+
|
83 |
+
if BUFFER_NAMES not in state_dict:
|
84 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
85 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
86 |
+
if debug:
|
87 |
+
print("Found buffers:", buffer_names)
|
88 |
+
|
89 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
90 |
+
buffers = {
|
91 |
+
k: v.float()
|
92 |
+
for k,
|
93 |
+
v in state_dict["module"].items() if k in buffer_names
|
94 |
+
}
|
95 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
96 |
+
|
97 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
98 |
+
|
99 |
+
return buffers, param_shapes, ds_version
|
100 |
+
|
101 |
+
|
102 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
103 |
+
|
104 |
+
total_files = len(files)
|
105 |
+
state_dicts = []
|
106 |
+
for f in files:
|
107 |
+
state_dicts.append(torch.load(f, map_location=device))
|
108 |
+
|
109 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
110 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
111 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
112 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
113 |
+
|
114 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
115 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
116 |
+
# use the max of the partition_count to get the dp world_size.
|
117 |
+
|
118 |
+
if type(world_size) is list:
|
119 |
+
world_size = max(world_size)
|
120 |
+
|
121 |
+
if world_size != total_files:
|
122 |
+
raise ValueError(
|
123 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
124 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
125 |
+
)
|
126 |
+
|
127 |
+
# the groups are named differently in each stage
|
128 |
+
if zero_stage == 2:
|
129 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
130 |
+
elif zero_stage == 3:
|
131 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
132 |
+
else:
|
133 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
134 |
+
|
135 |
+
if zero_stage == 2:
|
136 |
+
fp32_flat_groups = [
|
137 |
+
state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
|
138 |
+
for i in range(len(state_dicts))
|
139 |
+
]
|
140 |
+
elif zero_stage == 3:
|
141 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
142 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
143 |
+
#
|
144 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
145 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
146 |
+
|
147 |
+
fp32_flat_groups = [
|
148 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
|
149 |
+
0) for i in range(len(state_dicts))
|
150 |
+
]
|
151 |
+
|
152 |
+
return zero_stage, world_size, fp32_flat_groups
|
153 |
+
|
154 |
+
|
155 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
156 |
+
"""
|
157 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
158 |
+
|
159 |
+
Args:
|
160 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
161 |
+
|
162 |
+
"""
|
163 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
164 |
+
|
165 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
166 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
167 |
+
print(
|
168 |
+
f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
169 |
+
|
170 |
+
model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
|
171 |
+
buffers, param_shapes, ds_version = parse_model_state(model_file)
|
172 |
+
print(f'Parsing checkpoint created by deepspeed=={ds_version}')
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
176 |
+
param_shapes,
|
177 |
+
fp32_flat_groups,
|
178 |
+
buffers)
|
179 |
+
elif zero_stage == 3:
|
180 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
181 |
+
param_shapes,
|
182 |
+
fp32_flat_groups,
|
183 |
+
buffers)
|
184 |
+
|
185 |
+
|
186 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
|
187 |
+
param_shapes,
|
188 |
+
fp32_flat_groups,
|
189 |
+
buffers):
|
190 |
+
|
191 |
+
# Reconstruction protocol:
|
192 |
+
#
|
193 |
+
# XXX: document this
|
194 |
+
|
195 |
+
if debug:
|
196 |
+
for i in range(world_size):
|
197 |
+
for j in range(len(fp32_flat_groups[0])):
|
198 |
+
print(
|
199 |
+
f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
200 |
+
|
201 |
+
# XXX: memory usage doubles here (zero2)
|
202 |
+
num_param_groups = len(fp32_flat_groups[0])
|
203 |
+
merged_single_partition_of_fp32_groups = []
|
204 |
+
for i in range(num_param_groups):
|
205 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
206 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
207 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
208 |
+
avail_numel = sum([
|
209 |
+
full_single_fp32_vector.numel()
|
210 |
+
for full_single_fp32_vector in merged_single_partition_of_fp32_groups
|
211 |
+
])
|
212 |
+
|
213 |
+
if debug:
|
214 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
215 |
+
wanted_numel = sum(
|
216 |
+
[sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
217 |
+
# not asserting if there is a mismatch due to possible padding
|
218 |
+
print(f"Have {avail_numel} numels to process.")
|
219 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
220 |
+
|
221 |
+
state_dict = OrderedDict()
|
222 |
+
|
223 |
+
# buffers
|
224 |
+
state_dict.update(buffers)
|
225 |
+
if debug:
|
226 |
+
print(f"added {len(buffers)} buffers")
|
227 |
+
|
228 |
+
# params
|
229 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
230 |
+
# out-of-core computing solution
|
231 |
+
total_numel = 0
|
232 |
+
total_params = 0
|
233 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
234 |
+
offset = 0
|
235 |
+
avail_numel = full_single_fp32_vector.numel()
|
236 |
+
for name, shape in shapes.items():
|
237 |
+
|
238 |
+
unpartitioned_numel = shape.numel()
|
239 |
+
total_numel += unpartitioned_numel
|
240 |
+
total_params += 1
|
241 |
+
|
242 |
+
if debug:
|
243 |
+
print(
|
244 |
+
f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
|
245 |
+
)
|
246 |
+
state_dict[name] = full_single_fp32_vector.narrow(
|
247 |
+
0,
|
248 |
+
offset,
|
249 |
+
unpartitioned_numel).view(shape)
|
250 |
+
offset += unpartitioned_numel
|
251 |
+
|
252 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
253 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
254 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
255 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
256 |
+
align_to = 2 * world_size
|
257 |
+
|
258 |
+
def zero2_align(x):
|
259 |
+
return align_to * math.ceil(x / align_to)
|
260 |
+
|
261 |
+
if debug:
|
262 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
263 |
+
|
264 |
+
offset = zero2_align(offset)
|
265 |
+
avail_numel = zero2_align(avail_numel)
|
266 |
+
|
267 |
+
if debug:
|
268 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
269 |
+
|
270 |
+
# Sanity check
|
271 |
+
if offset != avail_numel:
|
272 |
+
raise ValueError(
|
273 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
274 |
+
|
275 |
+
print(
|
276 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
277 |
+
)
|
278 |
+
|
279 |
+
return state_dict
|
280 |
+
|
281 |
+
|
282 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
283 |
+
remainder = unpartitioned_numel % world_size
|
284 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
285 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
286 |
+
return partitioned_numel, padding_numel
|
287 |
+
|
288 |
+
|
289 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
|
290 |
+
param_shapes,
|
291 |
+
fp32_flat_groups,
|
292 |
+
buffers):
|
293 |
+
|
294 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
295 |
+
# param, re-consolidating each param, while dealing with padding if any
|
296 |
+
|
297 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
298 |
+
# merge list of dicts, preserving order
|
299 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
for i in range(world_size):
|
303 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
304 |
+
|
305 |
+
wanted_params = len(param_shapes)
|
306 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
307 |
+
# not asserting if there is a mismatch due to possible padding
|
308 |
+
print(f"Have {avail_numel} numels to process.")
|
309 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
310 |
+
|
311 |
+
state_dict = OrderedDict()
|
312 |
+
|
313 |
+
# buffers
|
314 |
+
state_dict.update(buffers)
|
315 |
+
if debug:
|
316 |
+
print(f"added {len(buffers)} buffers")
|
317 |
+
|
318 |
+
# params
|
319 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
320 |
+
# out-of-core computing solution
|
321 |
+
offset = 0
|
322 |
+
total_numel = 0
|
323 |
+
total_params = 0
|
324 |
+
for name, shape in param_shapes.items():
|
325 |
+
|
326 |
+
unpartitioned_numel = shape.numel()
|
327 |
+
total_numel += unpartitioned_numel
|
328 |
+
total_params += 1
|
329 |
+
|
330 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
331 |
+
|
332 |
+
if debug:
|
333 |
+
print(
|
334 |
+
f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
335 |
+
)
|
336 |
+
|
337 |
+
# XXX: memory usage doubles here
|
338 |
+
state_dict[name] = torch.cat(
|
339 |
+
tuple(fp32_flat_groups[i].narrow(0,
|
340 |
+
offset,
|
341 |
+
partitioned_numel)
|
342 |
+
for i in range(world_size)),
|
343 |
+
0).narrow(0,
|
344 |
+
0,
|
345 |
+
unpartitioned_numel).view(shape)
|
346 |
+
offset += partitioned_numel
|
347 |
+
|
348 |
+
offset *= world_size
|
349 |
+
|
350 |
+
# Sanity check
|
351 |
+
if offset != avail_numel:
|
352 |
+
raise ValueError(
|
353 |
+
f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
354 |
+
|
355 |
+
print(
|
356 |
+
f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
|
357 |
+
)
|
358 |
+
|
359 |
+
return state_dict
|
360 |
+
|
361 |
+
|
362 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
363 |
+
"""
|
364 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
365 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
366 |
+
via a model hub.
|
367 |
+
|
368 |
+
Args:
|
369 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
370 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
- pytorch ``state_dict``
|
374 |
+
|
375 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
376 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
377 |
+
the checkpoint.
|
378 |
+
|
379 |
+
A typical usage might be ::
|
380 |
+
|
381 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
382 |
+
# do the training and checkpoint saving
|
383 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
384 |
+
model = model.cpu() # move to cpu
|
385 |
+
model.load_state_dict(state_dict)
|
386 |
+
# submit to model hub or save the model to share with others
|
387 |
+
|
388 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
389 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
390 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
391 |
+
|
392 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
393 |
+
|
394 |
+
"""
|
395 |
+
if tag is None:
|
396 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
397 |
+
if os.path.isfile(latest_path):
|
398 |
+
with open(latest_path, 'r') as fd:
|
399 |
+
tag = fd.read().strip()
|
400 |
+
else:
|
401 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
402 |
+
|
403 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
404 |
+
|
405 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
406 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
407 |
+
|
408 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
409 |
+
|
410 |
+
|
411 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
412 |
+
"""
|
413 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
414 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
418 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
419 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
420 |
+
"""
|
421 |
+
|
422 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
423 |
+
print(f"Saving fp32 state dict to {output_file}")
|
424 |
+
torch.save(state_dict, output_file)
|
425 |
+
|
426 |
+
|
427 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
428 |
+
"""
|
429 |
+
1. Put the provided model to cpu
|
430 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
431 |
+
3. Load it into the provided model
|
432 |
+
|
433 |
+
Args:
|
434 |
+
- ``model``: the model object to update
|
435 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
436 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
437 |
+
|
438 |
+
Returns:
|
439 |
+
- ``model`: modified model
|
440 |
+
|
441 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
442 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
443 |
+
conveniently placed for you in the checkpoint folder.
|
444 |
+
|
445 |
+
A typical usage might be ::
|
446 |
+
|
447 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
448 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
449 |
+
# submit to model hub or save the model to share with others
|
450 |
+
|
451 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
452 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
453 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
454 |
+
|
455 |
+
"""
|
456 |
+
logger.info(f"Extracting fp32 weights")
|
457 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
458 |
+
|
459 |
+
logger.info(f"Overwriting model with fp32 weights")
|
460 |
+
model = model.cpu()
|
461 |
+
model.load_state_dict(state_dict, strict=False)
|
462 |
+
|
463 |
+
return model
|
464 |
+
|
465 |
+
|
466 |
+
if __name__ == "__main__":
|
467 |
+
|
468 |
+
parser = argparse.ArgumentParser()
|
469 |
+
parser.add_argument(
|
470 |
+
"checkpoint_dir",
|
471 |
+
type=str,
|
472 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
473 |
+
parser.add_argument(
|
474 |
+
"output_file",
|
475 |
+
type=str,
|
476 |
+
help=
|
477 |
+
"path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
|
478 |
+
)
|
479 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
480 |
+
args = parser.parse_args()
|
481 |
+
|
482 |
+
debug = args.debug
|
483 |
+
|
484 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|