File size: 4,687 Bytes
34352be
 
 
 
 
 
 
025fa5e
 
 
 
 
 
 
bf76214
32d9e14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
025fa5e
 
34352be
 
 
 
 
3449896
 
 
34352be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
025fa5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: apache-2.0
base_model: pszemraj/random-mega-ar-large
tags:
- generated_from_trainer
metrics:
- accuracy
inference:
  parameters:
    max_new_tokens: 64
    do_sample: true
    repetition_penalty: 1.1
    no_repeat_ngram_size: 5
    eta_cutoff: 0.001
widget:
- text: My name is El Microondas the Wise and
  example_title: El Microondas
- text: Kennesaw State University is a public
  example_title: Kennesaw State University
- text: Bungie Studios is an American video game developer. They are most famous for developing the award winning Halo series of video games. They also made Destiny. The studio was founded
  example_title: Bungie  
- text: The Mona Lisa is a world-renowned painting created by
  example_title: Mona Lisa
- text: >-
    The Harry Potter series, written by J.K. Rowling, begins with the book titled
  example_title: Harry Potter Series
- text: >-
    Question: I have cities, but no houses. I have mountains, but no trees.
    I have water, but no fish. What am I?

    Answer:
  example_title: Riddle
- text: The process of photosynthesis involves the conversion of
  example_title: Photosynthesis
- text: >-
    Jane went to the store to buy some groceries. She picked up apples, oranges, and a loaf of bread. When she got home, she realized she forgot
  example_title: Story Continuation
- text: >-
    Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
    and another train leaves Station B at 10:00 AM and travels at 80 mph,
    when will they meet if the distance between the stations is 300 miles?

    To determine
  example_title: Math Problem
- text: >-
    In the context of computer programming, an algorithm is
  example_title: Algorithm Definition
pipeline_tag: text-generation
datasets:
- pszemraj/simple_wikipedia_LM
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mega-ar-large-2048-simplewiki

This is a 'large' size autoregressive MEGA model initialized from random weights and trained on `pszemraj/simple_wikipedia_LM` for three epochs.

It achieves the following results on the evaluation set:
- Loss: 3.3412
- Accuracy: 0.4360

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 7.2245        | 0.11  | 100  | 6.9372          | 0.0711   |
| 6.6575        | 0.22  | 200  | 6.2335          | 0.1853   |
| 5.9406        | 0.34  | 300  | 5.3724          | 0.2635   |
| 5.4452        | 0.45  | 400  | 4.9243          | 0.2940   |
| 5.2524        | 0.56  | 500  | 4.6568          | 0.3172   |
| 4.7862        | 0.67  | 600  | 4.4488          | 0.3347   |
| 4.7132        | 0.79  | 700  | 4.2699          | 0.3481   |
| 4.6601        | 0.9   | 800  | 4.1502          | 0.3582   |
| 4.5067        | 1.01  | 900  | 4.0461          | 0.3681   |
| 4.4465        | 1.12  | 1000 | 3.9488          | 0.3773   |
| 4.4493        | 1.24  | 1100 | 3.8681          | 0.3833   |
| 4.3136        | 1.35  | 1200 | 3.8039          | 0.3897   |
| 4.2978        | 1.46  | 1300 | 3.7373          | 0.3956   |
| 4.0475        | 1.57  | 1400 | 3.6874          | 0.4003   |
| 4.1328        | 1.68  | 1500 | 3.6339          | 0.4061   |
| 4.0758        | 1.8   | 1600 | 3.5866          | 0.4115   |
| 3.8489        | 1.91  | 1700 | 3.5438          | 0.4163   |
| 3.913         | 2.02  | 1800 | 3.5136          | 0.4192   |
| 3.7746        | 2.13  | 1900 | 3.4860          | 0.4226   |
| 3.9547        | 2.25  | 2000 | 3.4505          | 0.4255   |
| 3.9726        | 2.36  | 2100 | 3.4283          | 0.4269   |
| 3.7546        | 2.47  | 2200 | 3.3999          | 0.4298   |
| 3.7442        | 2.58  | 2300 | 3.3820          | 0.4317   |
| 3.6848        | 2.7   | 2400 | 3.3687          | 0.4333   |
| 3.5491        | 2.81  | 2500 | 3.3531          | 0.4349   |
| 3.9563        | 2.92  | 2600 | 3.3412          | 0.4360   |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.2.0.dev20230907+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3