File size: 1,835 Bytes
d46422e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: EleutherAI/pythia-31m
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: BL-pythia-31m-simple_wikipedia_LM-2048-scratch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BL-pythia-31m-simple_wikipedia_LM-2048-scratch

This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1763
- Accuracy: 0.3676

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 80085
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 5.8617        | 0.45  | 100  | 5.5276          | 0.2451   |
| 5.2782        | 0.9   | 200  | 4.9596          | 0.2965   |
| 4.9996        | 1.35  | 300  | 4.6412          | 0.3310   |
| 4.6292        | 1.8   | 400  | 4.4344          | 0.3485   |
| 4.5339        | 2.25  | 500  | 4.2875          | 0.3600   |
| 4.5214        | 2.7   | 600  | 4.1763          | 0.3676   |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.2.0.dev20230907+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3