--- language: - en license: apache-2.0 base_model: pszemraj/tFINE-base-300m tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: tFINE-base-300m-samsum results: - task: name: Summarization type: summarization dataset: name: samsum type: samsum config: samsum split: None args: samsum metrics: - name: Rouge1 type: rouge value: 42.3629 library_name: transformers pipeline_tag: summarization --- # tFINE-base-300m-samsum An example fine-tune of [pszemraj/tFINE-base-300m](https://hf.co/pszemraj/tFINE-base-300m) for summarization using the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.9820 - Rouge1: 42.3629 - Rouge2: 18.4285 - Rougel: 34.6339 - Rougelsum: 38.7792 - Gen Len: 27.8033 > [!NOTE] > The base model was pre-trained with CTX 1024 and fine-tuned on samsum with 1024 CTX inputs. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 17868 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 4.0 ### Training results > keep epoch 3 checkpt as final | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.9528 | 0.9989 | 115 | 1.9189 | 40.093 | 18.2018 | 33.9749 | 36.9071 | 29.3333 | | 1.5346 | 1.9978 | 230 | 1.8827 | 41.4676 | 18.3467 | 34.1909 | 38.2131 | 27.6633 | | 1.1696 | 2.9967 | 345 | 1.9820 | 42.3629 | 18.4285 | 34.6339 | 38.7792 | 27.8033 | | 0.9359 | 3.9957 | 460 | 2.1588 | 41.2237 | 17.8161 | 33.7101 | 37.9569 | 30.18 |