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Prerequisites Topics

e Structure of the Transformer model and e Architectural differences between the
how the attention mechanism works. vanilla Transformer and LLaMA
 Training and inference of a Transformer « RMS Normalization (with review of Layer
model Normalization)
* Linear Algebra: matrix multiplication, dot * Rotary Positional Embeddings
roduct
P « KV-Cache

« Complex numbers: Euler’s formula (not

fundamental, nice to have) * Multi-Query Attention

» Grouped Multi-Query Attention

e =cosx +isinx

 SwiGLU Activation Function

Sometimes, in order to introduce the topic, | will review
concepts that you may already be familiar with. Feel
free to skip those parts.
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(“Attention is all you need”)
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Models (LLaMA 1)

params dimension 17 heads n layers learning rate batch size n tokens

6.7B 4096 32 32 3.0e4 AM 1.0T
13.0B 5120 40 40 3.0e 4 AM 1.0T
32.5B 6656 52 60 1.5 AM 1.4T
65.2B 8192 64 80 1.5~ AM 1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.
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Models (LLaMA 2)

Training Data Params Context GOA Tokens LR
Length

7B 2k 1.0T 3.0 x 10~

T ANA 1 See Touvron et al. 13B 2k 1.0T 3.0x10*
(2023) 33B 2k 14T 1.5 x 1074

65B 2k 14T  1.5x 1074

7B 4k 2.0T 3.0 x 1074

LLAMA o A new mix of publicly 13B 4k 2.0T 3.0x 1074
available online data 34B 4k v 2.0T 1.5 x 1074

70B 4k v 2.0T 1.5 x10~*

Table 1: LLama 2 family of models. Token counts refer to pretraining data only. All models are trained with
a global batch-size of 4M tokens. Bigger models — 34B and 70B — use Grouped-Query Attention (GQA) for
improved inference scalability.

Umar Jamil - https://github.com/hkproj/pytorch-llama-notes



https://github.com/hkproj/pytorch-llama-notes

Softmax

Let’s review the Embeddingsl! i

Linear

T

RMS Norm

Feed Forward
SwiGLU

RMS Norm

N x

-®

: : e

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q® K® \'
t f t

® Rotary

Positional Encodings

Embeddings

*

Input

LLaMA

Umar Jamil - https://github.com/hkproj/pytorch-llama-notes



https://github.com/hkproj/pytorch-llama-notes

Softmax
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What is normalization?
Let’s review neural networks

Hidden Layer 1 Hidden Layer 2 <

t

Umar Jamil - https://github.com/hkproj/pytorch-llama-notes



https://github.com/hkproj/pytorch-llama-notes

A simple parallel: the bad CEO in a phone
factory

Raw Material Output Loss

Hardware Team Software Team =

t

Umar Jamil - https://github.com/hkproj/pytorch-llama-notes



https://github.com/hkproj/pytorch-llama-notes

What is normalization?
Let’s review neural networks’ maths!

Suppose we have a linear layer, defined as nn.Linear(in_features=3, out_features=5, bias=True). This linear layer will create two matrices, called W (weight)
and b (bias). If we have an input X of shape (10, 3) the output O will be (10, 5). But how does this happen mathematically?

f1 2 13 f1 f2 f3 f4 15
[tem 1 0 — XWT + b ltem 1
ltem 2 *We usually apply a non-linearity ltem 2
1 to the output matrix O
ltem 3 " ltem 3
n2

ni n2 n3 n4 n5

(10, 3) (5, 3) n (1

n5

) (10, 5)

Each neurons has 3 weights, one for each of the input feature
Each neuron has 1 bias that is added

[tem 10 [tem 10
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Let’s review neural networks’ maths!

— — 3 AT nl n2 n3 n4 n5
zy = (p+ b)) = Qi=1a;w; + by) , ,
b _ b The bias vector will be broadcasted to every
: - row in the XWT table.
The output of the neuron 1 for the item 1 only depends on the
features of the item 1. Usually we apply a non-linearity like the ReLU (1 , 5)
function to the output z;. z; is referred to as the activation of the +

neuron 1 w.r.tthe data item 1.

1 2 3 f1 f2 3 f4 A5 f1 f2 {3 f4 {5
ltem 1 0=XwT+p ltem 1 ltem 1
ltem 2 [tem 2 [tem 2
ltem 3 [tem 3 [tem 3

(10, 3) (10, 5)

Item 10 Item 10 [tem 10
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Let’s review neural networks’ maths!

« The output of a neuron for a data item depends on the features of the input data item (and the
neuron’s parameters).

« We can think of the input to a neuron as the output of a previous linear.

* If the previous layer, after its weights are updated because of gradient descent, changes drastically its
output, the next layer will have its input changed drastically, so it will be forced to re-adjust its weights
drastically in turn at the next step of gradient descent.

» The phenomenon by which the distributions of internal nodes (neurons) of a neural network change is
referred to as Internal Covariate Shift. And we want to avoid it because it makes training the network
slower, as the neurons are forced to re-adjust drastically their weights in one direction or another
because of drastic changes in the outputs of the previous layers.
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A solution to jumping activations: layer

normalization!

o 3 U o2
ltem 1 | o1 az as Hq af
ltem 2
ltem 3

(10, 3)

ltem 10

[tem 1

[tem 2

[tem 3

[tem 10

f1

f2

f3

z — E[z]

. v/ Var[z] + €

Each item is updated with its normalized value, which will turn it
into a normal distribution with 0 mean and variance of 1.

* The two parameters gamma and beta are learnable
parameters that allow the model to “amplify” the scale of each
feature or apply a translation to the feature according to the
needs of the loss function.

With batch normalization we
normalize by columns (features)

With layer normalization we
normalize by rows (data items)
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Root Mean Square Normalization

Root Mean Square Layer Normalization

Biao Zhang' Rico Sennrich?®
1School of Informatics, University of Edinburgh
2Institute of Computational Linguistics, University of Zurich
B.Zhang@ed.ac.uk, sennrich@cl.uzh.ch

4 RMSNorm

A well-known explanation of the success of LayerNorm is its re-centering and re-scaling invariance
property. The former enables the model to be insensitive to shift noises on both inputs and weights,
and the latter keeps the output representations intact when both inputs and weights are randomly
scaled. In this paper, we hypothesize that the re-scaling invariance is the reason for success of
LayerNorm, rather than re-centering invariance.

We propose RMSNorm which only focuses on re-scaling invariance and regularizes the summed
inputs simply according to the root mean square (RMS) statistic:

Just like Layer Normalization, we also have a
(4) learnable parameter gamma (g in the formula on
the left) that is multiplied by the normalized values.

_ <
a; = mg“ where RMS(H) =

Intuitively, RMSNorm simplifies LayerNorm by totally removing the mean statistic in Eq. (3) at
the cost of sacrificing the invariance that mean normalization affords. When the mean of summed
inputs is zero, RMSNorm is exactly equal to LayerNorm. Although RMSNorm does not re-center
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Why RMSNorm?

* Requires less computation compared to Layer Normalization.

It works well in practice.
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Softmax

What is Rotary Positional Encoding? i
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What’s the difference between the absolute
positional encodings and the relative ones?

» Absolute positional encodings are fixed vectors that are added to the embedding of a token to represent its
absolute position in the sentence. So, it deals with one token at a time. You can think of it as the pair (latitude,
longitude) on a map: each point on earth will have a unique pair.

* Relative positional encodings, on the other hand, deals with two tokens at a time and it is involved when we calculate
the attention: since the attention mechanism captures the “intensity” of how much two words are related two each
other, relative positional encodings tells the attention mechanism the distance between the two words involved in it.
So, given two tokens, we create a vector that represents their distance.

* Relative positional encodings were introduced in the following paper

Self-Attention with Relative Position Representations

Peter Shaw Jakob Uszkoreit Ashish Vaswani
Google Google Brain Google Brain
petershaw @google.com usz@ google.com avaswani @ google.com
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Absolute Positional Encodings
From “Attention is all you need”

Relative Positional Encodings
From “Self-Attention with relative
positional representations”
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*NSFW: Menage a trois
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Rotary Position Embeddings

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY
POSITION EMBEDDING

Jianlin Su Yu Lu Shengfeng Pan
Zhuiyi Technology Co., Ltd. Zhuiyi Technology Co., Ltd. Zhuiyi Technology Co., Ltd.
Shenzhen Shenzhen Shenzhen
bojonesu@wezhuiyi.com julianlu@wezhuiyi.com nickpan@wezhuiyi.com
Ahmed Murtadha Bo Wen Yunfeng Liu
Zhuiyi Technology Co., Ltd. Zhuiyi Technology Co., Ltd. Zhuiyi Technology Co., Ltd.
Shenzhen Shenzhen Shenzhen

mengjiayi@wezhuiyi.com brucewen@wezhuiyi.com glenliu@wezhuiyi.com
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Rotary Position Embeddings: the inner product

* The dot product used in the attention mechanism is a type of inner product,
which can be through of as a generalization of the dot product.

« Can we find an inner product over the two vectors q (query) and k (key) used in
the attention mechanism that only depends on the two vectors and the relative
distance of the token they represent?

Under the case of d = 2, we consider two-word embedding vectors x,, xj, corresponds to query and key and their
position m and n, respectively. According to eq. (1), their position-encoded counterparts are:

a,, = fCI(mqv m),
k., = fi(xk,n), 20)

where the subscripts of g,,, and k,, indicate the encoded positions information. Assume that there exists a function g
that defines the inner product between vectors produced by f, xy:

q:;q,kn = (fq(wmp TTLL fk(m'm n)) = g(a':m, Ly, N — m)a (21)
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Rotary Position Embeddings: the inner product

« We can define a function g like the following that only depends on the on the two
embeddings vector q and k and their relative distance

fq (Cvm, TTL) = (qum)eimﬂ
fk(mng n) b (kan)e’?:n@
g(mﬂfla Ly, M — ?’L) — Re[(qum)(Wkwn)*ei(m_n)g]

« Using Euler’s formula, we can write it into its matrix form.

. [ cosmf —sinmb W(; ,lk)} W{(; 52’3} T
f{qgk} (“’*rm m) o sin mb cos mb WEQU W(QQ? xg)
{a.k} {a,k}

* = Conjugate of the complex number

Rotation matrix in a 2d space, hence the name rotary position embeddings
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Rotary Position Embeddings: the rotation matrix

>

\
>
\Fé

- X

In[R2, consider the matrix that rotates a given vector v by a counterclockwise angle @ in a fixed coordinate system. Then

cos f —sinf}]

sinf) cos@

S0

v = Ry vyp. ()

From Wolfram MathWorld: https://mathworld.wolfram.com/RotationMatrix.html
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Rotary Position Embeddings: the general form

Since the matrix is sparse, it is not convenient to use it to compute the positional embeddings

gy (@mom) = R ., W (g 1y @m (14)
where
cosmb; —sinmb, 0 0 0 0 \
sinmf; cosmb, 0 0 0 0
0 0 cosmbls —sinmfy 0 0
Rd@ = 0 0 sinmf, cosmb,  --- 0 0 (15)
0 0 0 0 <o cosmbg,  —sinmby s
\ 0 0 0 0 ceosinmbfge cosmbys

is the rotary matrix with pre-defined parameters © = {6; = 10000~2(=1/4 ; ¢ [1,2....,d/2]}. A graphic illustration
of RoPE is shown in Figure[(T}. Applying our RoPE to self-attention in Equation (2), we obtain:

qga,k"n — (Rg,qumm)-r(Rg,nwkwﬂ) — wTWquG),n—kawﬂ (16)
where R%,n_m = (R%’m)TRd@m. Note that RS is an orthogonal matrix, which ensures stability during the process of
encoding position information. In addition, due to the sparsity of R%, applying matrix multiplication directly as in
Equation (I6) is not computationally efficient; we provide another realization in theoretical explanation.
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Rotary Position Embeddings: the
computational-efficient form

 Given a token with embedding vector x, and the position m of the token inside
the sentence, this is how we compute the position embeddings for the token.

3.4.2 Computational efficient realization of rotary matrix multiplication

Taking the advantage of the sparsity of R‘é,m in Equation (15), a more computational efficient realization of a
multiplication of Rd@ and & € R? is:

x cos mb —x sin mo
(o) (o) fm) (s

To cos mb, sin m#;
T3 cos mbs —2y sin mbs
d _ x cos mbo € sin mb,
R(—),'m,m - 4 %Y + 3 & (34)
Td—1 COS m@d/g —Td—1 sin m@d/g

\ Ty / \Cosmﬁdﬂ/ \ :Ud_ ) \Sinm@d/g)
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Rotary Position Embeddings: long-term decay

The authors calculated an upper bound for the inner product by varying the distance between two
tokens and proved that it decays with the growth of the relative distance.
This means that the “intensity” of relationship between two tokens encoded with Rotary Positional

Embeddings will be numerically smaller as the distance between them grows.

relative upper bound

20
18:—
16
14-
12:—

10+

relative distance

T s 10 0 200 250
Figure 2: Long-term decay of RoPE.
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Rotary Position Embeddings: practical considerations

» The rotary position embeddings are only applied to the query and the keys, but not the values.

« The rotary position embeddings are applied after the vector q and k have been multiplied by the W
matrix in the attention mechanism, while in the vanilla transformer they're applied before.
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Softmax

What is the KV Cache? t
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Next Token Prediction Task ==

Linear
T
. . . RMS Norm
 Imagine we want to train a model to write Dante F
Alighieri's Divine Comedy’s 5" Canto from the Inferno. 7 77777777777~ v T

Amor, ch'al cor gentil ratto s'apprende,
prese costui de la bella persona
che mi fu tolta; e 'l modo ancor m'offende.

Feed Forward

r 3

Amor, ch'a nullo amato amar perdona, RMS Norm
mi prese del costui piacer si forte, /'y
che, come vedi, ancor non m'abbandona. NX

Amor condusse noi ad una morte.
Caina attende chi a vita ci spense.

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q® K®
1 4

@ Rotary
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taken from me—how that was done still wounds me.
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Love, that releases no beloved from loving, RMS Norm
took hold of me so strongly through his beauty 1
that, as you see, it has not left me yet. sy F )
Embeddings
Love led the two of us unto one death. °
Caina waits for him who took our life.” t
Input

Source: https://digitaldante.columbia.edu/dante/divine-comedy/inferno/inferno-5/
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Next Token Prediction Task

Target Love that can quickly seize the gentle heart [EOS]

Training

Input [SOS] Love that can quickly seize the gentle heart
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Next Token Prediction Task: Inference

Output Love

Inference
T=1

nnnnnnnnnnnnnnnnnnn

Input [SOS]
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Next Token Prediction Task: Inference

Output Love that

Inference
T=2

nnnnnnnnnnnnnnnnnnn

Input [SOS] Love
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Next Token Prediction Task: Inference

Output Love that can

Inference
T=3

nnnnnnnnnnnnnnnnnnn

Input [SOS] Love that
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Next Token Prediction Task: Inference

Output Love that can quickly

Inference
T=4

nnnnnnnnnnnnnnnnnnn

Input [SOS] Love that can
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Next Token Prediction Task: Inference

Output Love that can quickly seize

Inference
T=5

nnnnnnnnnnnnnnnnnnn

Input [SOS] Love that can quickly

Umar Jamil - https://github.com/hkproj/pytorch-llama-notes



https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

Output Love that can quickly seize the

Inference
T=6

nnnnnnnnnnnnnnnnnnn

Input [SOS] Love that can quickly seize
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Next Token Prediction Task: Inference

Output Love that can quickly seize the gentle

Inference
T=7

Input [SOS] Love that can quickly seize the
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Next Token Prediction Task: Inference

Output Love that can quickly seize the gentle heart

Inference
T=8

Input [SOS] Love that can quickly seize the gentle
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Next Token Prediction Task: Inference

Output Love that can quickly seize the gentle heart [EOS]

Inference
T=9

Input [SOS] Love that can quickly seize the gentle heart
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Next Token Prediction Task: the motivation
behind the KV cache

« Atevery step of the inference, we are only interested in the last token output by the model, because we already

have the previous ones. However, the model needs access to all the previous tokens to decide on which token to
output, since they constitute its context (or the “prompt”).

* Isthere a way to make the model do less computation on the token it has already seen during inference?
YES! The solution is the KV cache!
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QK"

Self-Attention during Next Token Prediction Task
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Self-Attention during Next Token Prediction Task

QK"

Q KT /4 Attention

| TOKEN 1 | . | TOKEN 1 | | ATTENTION 1 |
5
K
1

(1, 4096) (4096, 1) (1, 4096) (1, 4096)
. QK"
Inf Attention(Q, K,V) = softmax |4
‘P eqence (1,1 v dk
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Self-Attention during Next Token Prediction Task
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Self-Attention during Next Token Prediction Task
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Self-Attention during Next Token Prediction Task

QK"
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1. We already computed these dot products

2. Since the model is causal, we don’t care about the attention
In the previous steps. Can we cache them?

of a token with its successors, but only with the tokens before it.

3. We don‘t care about these, as we want to predict the
next token and we already predicted the previous ones.

Q KT %4 Attention
TOKEN 1 TOKEN 1 ATT
TOKEN 2 TIT|T|T TOKEN 2 ATT
Ol Of Of ©
TOKEN 3 k|l k| gl € TOKEN 3 ATT
TOKEN 4 El E| E| E _ TOKEN 4 _ ATTENTION 4
X N| N| N[ N = X —
11 2| 3| 4
4. We are only interested
In this last row!
(4, 4096) (4096, 4) (4,4096) (4, 4096)
T

Attention(Q, K,V) = softmax |4
Inference

Q
(4, 4) \/d_k
T=4
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ALL HAIL

THE KV GAGHE

imgflip.com
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Self-Attention
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Self-Attention
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Self-Attention with KV-Cache
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Self-Attention with KV-Cache
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Softmax

What is Grouped Multi-Query Attention? i
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GPUs have a “problem”: they’re too fast.

1 1 1 A100 A100 A100 Al00

* Inrecentyears, GPUs have become very fast at performing calculations, insomuch that the P L I LA L
speed of computation (FLOPs) is much higher than the memory bandwidth (GB/s) or speed of Fred 97 TFLOPS
data transfer between memory areas. For example, an NVIDIA A100 can perform 19.5 TFLOPs FP64 Tensor 19.5 TFLOPS
while having a memory bandwidth of 2TB/s. E‘;;

« This means that sometimes the bottleneck is not how many operations we perform, but how et 196 TRLOF TrLopst
much data transfer our operations need, and that depends on the size and the quantity of the BFLOAT15 12 TFLOPS | 624 TFLOPS*
tensors involved in our calculations. Tensor Core

FP16 Tensor 312 TFLOPS | 624 TFLOPS*
Core

« For example, computing the same operation on the same tensor N times may be faster than INT8 Tensor 624TOPS | 1248 TOPS®
computing the same operation on N different tensors, even if they have the same size, this is Core
because the GPU may need to move the tensors around. Rk o el ey Y

. . . . GPU Memor 1,5556B/s | 1,935GB/s | 1,555GB/s | 2,039GB/s
« This means that our goal should not only be to optimize the number of operations we do, Bandwidth
but also minimize the memory access/transfers that we perform. ot I e e
(TDP)
Multi-Instance Upto?7 Upto7 Upto7 Upto7
GPU MIGs @ MIGs @ MIGs @ MIGs @
5GB 10GB 5GB 10GB
Form Factor PCle SXM
Interconnect ~ NVIDIA® NVLink® Bridge NVLink: 600GB/s
for 2 GPUs: 600GB/s ** PCle Gen4: 64GB/s
PCle Gen4: 64GB/s
Server Options ~ Partner and NVIDIA- NVIDIA HGX™ A100-
Certified Systems™ with Partner and NVIDIA-
1-8 GPUs Certified Systems with

4,8,0r 16 GPUs

NVIDIA DGX™ A100 with
8GPUs

* With sparsity
** SXM4 GPUs via HGX A100 server boards; PCle GPUs via NVLink Bridge for up to two GPUs
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Introducing Multi-Query Attention

Fast Transformer Decoding: One Write-Head is All
You Need

Noam Shazeer
Google
noam@google.com

November 7, 2019
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Comparing different attention algorithms:
vanilla batched multi-head attention

Multihead Attention as presented in the original paper
“Attention is all you need"”.

By setting m = n (sequence length of query = seq. length of
keys and values)

The number of arithmetic operations performed is 0(bnd?)

The total memory involved in the operations, given by the
sum of all the tensors involved in the calculations (including
the derived ones!) is 0(bnd + bhn? + d?)

The ratio between the total memory and the number of
arithmetic operations is 0(% + ﬁ)

In this case, the ratio is much smaller than 1, which means that
the number of memory access we are performing is much less
than the number of arithmetic operations, so the memory
access is not the bottleneck here.

torch.rand(b, n, d)
M = torch.rand(b, m, d)

def MultiheadAttentionBatched():

d, m, n, b, h, k, v = 512, 18, 18, 32, 8, (512 // 8), (512 // 8)

mask = torch.rand(b, h, n, m)

P_g torch.
P_k torch.
P_v = torch.
P_o torch.

rand(h,
rand(h,
rand(h,
rand(h,

3

k)
k)
v)
v)

Q = torch.einsum("bnd, hdk->bhnk ", X, P_q)

K = torch.einsum("bmd, hdk

>bhmk", M, P_k)

V = torch.einsum("bmd, hdv->bhmv™, M, P_v)

logits = torch.einsum("bhnk,bhmk->bhnm"™, Q, K)
weights = torch.softmax(logits + mask, dim=-1)

0 = torch.einsum("bhnm,bhmv->bhnv

, weights, V)

Y = torch.einsum("bhnv,hdv->bnd ", O, P_o)

return Y
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Comparing different attention algorithms:
batched multi-head attention with KV cache

def MultiheadSelfAttentionIncremental():
« Uses the KV cache to reduce the number of operations d, b, h, k, v = 512, 32, 8, (512 // 8), (512 // 8)
performed.

« Bysettingm = n(sequence length of query = seq. length of

keysancivalues) prev_K = torch.rand(b, h, m, k)

prev_V = torch.rand(b, h, m, v)
« The number of arithmetic operations performed is 0(bnd?)
torch.rand(b, d)

* The total memory involved in the operations, given by the torch.rand(b. d)

sum of all the tensors involved in the calculations (including

the derived ones!) is 0(bn?d + nd?) torch.rand(h, d, k)
torch.rand(h, d, k)
* The ratio between the total memory and the number of torch.rand(h, d, v)
arithmetic operations is 0(% + %) torch.rand(h, d, v)
« Whenn = d (the sequence length is close to the size of the torch.einsum("bd,hdk->bhk", X, P_q)
embedding vector) or b = 1 (the batch size is 1), the ratio new K = torch.concat(

becomes 1 and the memory access now becomes the
bottleneck of the algorithm. For the batch size is not a
problem, since it is generally much higher than 1, while for the

%term, we need to reduce the sequence length. But there’s a
better way... )

[prev_K, torch.einsum("bd,hdk->bhk", M, P_k).unsqueeze(2)], axis=2

)

new_V = torch.concat(
[prev_V, torch.einsum("bd,hdv->bhv", M, P_v).unsqueeze(2)], axis=2

logits = torch.einsum("bhk,bhmk->bhm", q, new_K)
weights = torch.softmax(logits, dim=-1)

0 = torch.einsum("bhm,bhmv->bhv", weights, new_V)
y = torch.einsum("bhv,hdv->bd", 0, P_o)

return y, new_K, new_V
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Comparing different attention algorithms:
multi-query attention with KV cache

MultiquerySelfAttentionIncremental():

d, b, h, k, v = 512, 32, 8, (512 // 8), (512 // 8
*  We remove the h dimension from the K and the V, while Y ( )5 ( )

keeping it for the Q. This means that all the different query

heads will share the same keys and values.
prev_K = torch.rand(b, m, k)

* The number of arithmetic operations performed is prev_V = torch.rand(b, m, v)
0(bnd?)
= torch.rand(b, d)
torch.rand(b, d)
torch.rand(h, d, k)
torch.rand(d, k)

* The total memory involved in the operations, given by the
sum of all the tensors involved in the calculations
(including the derived ones!) is 0(bnd + bn?k + nd?)

* The ratio between the total memory and the number of torch.rand(d, v)
arithmetic operations is 0(% + % + %) torch.rand(h, d, v)
« Comparing with the previous approach, we have reduced torch.einsum("bd, hdk->bhk", X, P_q)
the expensive term%byafactor of h. { = torch.concat([prev_K, torch.einsum("bd,dk->bk"™, M, P_k).unsqueeze(1l)], axis=1)
torch.concat([prev_V, torch.einsum("bd,dv->bv", M, P_v).unsqueeze(1l)], axis=1)
* The performance gains are important, while the model'’s logits = torch.einsum("bhk,bmk->bhm", g, K)

qua|lty degrades only a little bit. weights = torch.softmax(logits, dim=-1)

0 = torch.einsum("bhm,bmv->bhv", weights, V)
y = torch.einsum("bhv,hdv->bd", 0, P_o)
return y, K, V
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Speed & Quality comparisons

BLEU score on a translation task (English - German)

Table 1: WMT14 EN-DE Results.

Table 2: Amortized training and inference costs for WMT14 EN-DE Translation Task with sequence length
128. Values listed are in TPUv2-microseconds per output token.

Attention h di,d, dys | In(PPL) BLEU | BLEU (test)

Type (dev) (dev) | beam 1 /4

multi-head 8 128 4096 1.424 26.7 27.7 /284 Attention | Training Inference Beam-4 Search

multi—query 8 128 5440 1.439 26.5 27.5 / 28.5 Type enc. + dec. enc. + dec.
multi-head local 8 128 4096 1.427 26.6 275/ 28.3 multi-head 13.2 1.7 + 46 2.0 + 203
multi-query local 8 128 5440 1.437 26.5 27.6 / 28.2 multi-query 13.0 1.5 4+ 3.8 1.6 + 32

multi-head 1 128 6784 1.518 25.8 multi-head local 13.2 1.7 + 23 1.9 + 47

multi-head 2 64 6784 1.480 26.2 26.8 / 27.9 multi-query local 13.0 1.5 4+ 3.3 1.6 + 16

multi-head 4 32 6784 1.488 26.1

multi-head 8 16 6784 1.513 25.8

To demonstrate that local-attention and multi-query attention are orthogonal, we also trained "local"
versions of the baseline and multi-query models, where the decoder-self-attention layers (but not the other
attention layers) restrict attention to the current position and the previous 31 positions.
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Grouped Multi-Query Attention: a compromise
between two extremes.

Multi-Head Attention Grouped Multi-Query Attention Multi-Query Attention
High quality * A good compromise between quality and * Lossin quality
Computationally slow speed «  Computationally fast

Multi-head Grouped-query Multi-query
Values

GQA: Training Generalized Multi-Query Transformer Models from

Multi-Head Checkpoints milmimimimimimls
Joshua Ainslie; Jam IT] Mlld] Keys
Yury Zemlyanskiy, F ric hr ghal
—

Google Research i i ; ' : : : N T
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Softmax
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SwiGLU Activation Function

GLU Variants Improve Transformer

Noam Shazeer
Google
noam@google.com

February 14, 2020
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SwiGLU Activation Function

The author compared the performance of a Transformer model by using different activation functions in the Feed-Forward layer of the
Transformer architecture.

ReGLU(z, W, V,b, ¢) = max(0,zW + b) ® (xV + ¢)
GEGLU(z, W, V,b,¢) = GELU(2W +b) @ (zV + ¢) (5)
SwiGLU (z, W, V. b, ¢, B) = Swishg(zW + b) ® (zV + ¢)

In this paper, we propose additional variations on the Transformer FFN layer which use GLU or one of
its variants in place of the first linear transformation and the activation function. Again, we omit the bias
terms.

FENarLu(z, W, V. W3) = (o(zW) @ =V )Wy
FFNBilinear (7, W, V., W3) = (zW ®@ V) Wy
FFNgecru(z, W, V,W3) = (max(0,2W) @ V)5 (6)
FFNgecoLy (z, W, V, Ws) = (GELU(zW) ® 2V)Ws
FENgwicrLu(z, W, V. Wy) = (Swishy (zW) @ 2V )Ws

All of these layers have three weight matrices, as opposed to two for the original FFN. To keep the
number of parameters and the amount of computation constant, we reduce the number of hidden units dy
(the second dimension of W and V' and the first dimension of W5) by a factor of % when comparing these
layers to the original two-matrix version.
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SwiGLU Activation Function

Transformer ("Attention is all you need”) class Feedforuard(nn.todule):

def __init_ (
self,
hidden_dim: int,
multiple of: int,
ffn_dim multiplier: optional[fleat],

super().__init_ ()
hidden_dim = int(2 * hidden_dim / 3)
LLa MA # custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)

FFNSW]GLU ('fr:? ‘[M"| ‘{/7 WQ) —_— (SW]._S}]_]_ (:L'W) ® :I;V)WQ hidden dim = multiple of * ((hidden dim + multiple of - 1) // multiple of)

self.wl = ColumnParallelLinear(

dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x

We use the swish function with g = 1. In this case it's called the Sigmoid Linear

Unit (SiLU) function. :

self.w2 = RowParallellinear(

SILU0 hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x
. . . & 61 )
swish(z) = zsigmoid(fz) = —— :
1 + 6_33, . self.w3 = ColumnParallellLinear(
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x
: )
2o
© def forward(self, x):
2 return self.w2(F.silu(self.wi(x)) * self.w3(x))
vy
-6
- 0 2 2 6
Input
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How well does it performe

Table 1: Heldout-set log-perplexity for Transformer models on the segment-filling task from [Raffel et al.,
2019]. All models are matched for parameters and computation.

Training Steps 65,536 524,288
FFENRepu(baseline) | 1.997 (0.005)  1.677
FFNgeLU 1.983 (0.005)  1.679
FFNswish 1.994 (0.003)  1.683
FFNgLu 1.982 (0.006)  1.663
FFNBilinear 1.960 (0.005)  1.648
FFNcEeGLU 1.942 (0.004) 1.633
FFNgwicLU 1.944 (0.010) 1.636
FFNRecLU 1.953 (0.003)  1.645

Table 2: GLUE Language-Understanding Benchmark [Wang et al., 2018] (dev).

Score | CoLA SST-2 MRPC MRPC STSB STSB QQP QQP MNLIm MNLImm QNLI RTE
Average | MCC Acc F1 Acc PCC SCC F1 Acc Acce Acc Acc Acce

FFNReLU 83.80 51.32  94.04 93.08 90.20 89.64 89.42 89.01 91.75 85.83 86.42 92.81 80.14
FFNgrLU 83.86 53.48 94.04  92.81 90.20 89.69 89.49 88.63 91.62 85.89 86.13 92.39  80.51
FFNgwish 83.60 49.79  93.69  92.31 89.46  89.20 88.98 88.84 91.67 85.22 85.02 92.33 81.23
FFNcLu 84.20 49.16 9427  92.39 89.46 8946 89.35 88.79 91.62 86.36 86.18 92.92 84.12
FFNgecLU 84.12 53.65 9392 9268 89.71  90.26 90.13 89.11 91.85 86.15 86.17 92.81 79.42
FFNBilinear 83.79 51.02 94.38  92.28 89.46  90.06 89.84 88.95 91.69 86.90 87.08 9292 81.95
FFNswicLy 84.36 51.59 93.92  92.23 88.97 90.32 90.13 89.14 91.87  86.45 86.47 92.93 83.39
FFNRecLU 84.67 | 56.16 94.38  92.06 89.22  89.97 89.85 88.86 91.72 86.20 86.40 92.68 81.59
[Raffel et al., 2019] 83.28 53.84 92.68  92.07 88.92  88.02 87.94 88.67 91.56 84.24 84.57 90.48  76.28
ibid. stddev. 0.235 1.111 0569  0.729 1.019  0.374 0418 0.108  0.070 0.291 0.231 0.361  1.393
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Why SwiGLU works so well?

4 Conclusions

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning
setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training,
as well as better results on many downstream language-understanding tasks. These architectures are simple
to implement, and have no apparent computational drawbacks. We offer no explanation as to why these
architectures seem to work; we attribute their success, as all else, to divine benevolence.

ALLHAIL
“ &

THE GLU GODS

Umar Jamil - https://github.com/hkproj/pytorch-llama-notes
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