
Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA from scratch
(LLaMA 1 and LLaMA 2)

Umar Jamil
Downloaded from: https://github.com/hkproj/pytorch-llama-notes
License: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Not for commercial use

Image source: Midjourney prompted by THE DECODER

https://github.com/hkproj/pytorch-llama-notes
https://github.com/hkproj/pytorch-llama-notes
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://the-decoder.com/metas-llama-language-model-shows-that-parameters-are-not-everything/

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Prerequisites

• Structure of the Transformer model and
how the attention mechanism works.

• Training and inference of a Transformer
model

• Linear Algebra: matrix multiplication, dot
product

• Complex numbers: Euler’s formula (not
fundamental, nice to have)

Topics

• Architectural differences between the
vanilla Transformer and LLaMA

• RMS Normalization (with review of Layer
Normalization)

• Rotary Positional Embeddings

• KV-Cache

• Multi-Query Attention

• Grouped Multi-Query Attention

• SwiGLU Activation Function

Sometimes, in order to introduce the topic, I will review
concepts that you may already be familiar with. Feel
free to skip those parts.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Transformer
(“Attention is all you need”)

LLaMA

Transformer vs LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Models (LLaMA 1)

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Models (LLaMA 2)

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

Let’s review the Embeddings!

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is normalization?

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Input Output

Hidden Layer 1 Hidden Layer 2

Loss

Target

What is normalization?
Let’s review neural networks

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Raw Material Output

Hardware Team Software Team

Loss

Target

A simple parallel: the bad CEO in a phone
factory

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

What is normalization?
Let’s review neural networks’ maths!

Suppose we have a linear layer, defined as nn.Linear(in_features=3, out_features=5, bias=True). This linear layer will create two matrices, called W (weight)
and b (bias). If we have an input X of shape (10, 3) the output O will be (10, 5). But how does this happen mathematically?

X =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

W = b =

n1 n2 n3 n4 n5

O =

Item 1

f1 f2 f3 f4 f5

Item 2

Item 3

Item 10

Each neurons has 3 weights, one for each of the input feature
Each neuron has 1 bias that is added

𝑶 = 𝑿𝑾𝑻 + 𝒃

n1

n4

n3

n2

n5

*We usually apply a non-linearity
to the output matrix O

(10, 3) (5, 3) (1, 5) (10, 5)

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Let’s review neural networks’ maths!

a1 a2 a3

X =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

𝑾𝑻 =

𝑶 = 𝑿𝑾𝑻 + 𝒃

w1

w2

w3

n1 n4n3n2 n5

𝑿𝑾𝑻 =

r1Item 1

f1 f2 f3 f4 f5

Item 2

Item 3

Item 10

b

1
b =

n1 n2 n3 n4 n5

+

The bias vector will be broadcasted to every
row in the 𝑋𝑊𝑇 table.

O =

z1Item 1

f1 f2 f3 f4 f5

Item 2

Item 3

Item 10

(10, 3) (3, 5) (10, 5)

(1, 5)

(10, 5)

𝑧1 = (𝑟1 + 𝑏1) = (σ𝑖=1
3 𝑎𝑖𝑤𝑖 + 𝑏1)

The output of the neuron 1 for the item 1 only depends on the
features of the item 1. Usually we apply a non-linearity like the ReLU
function to the output 𝑧1. 𝑧1 is referred to as the activation of the
neuron 1 w.r.t the data item 1.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Let’s review neural networks’ maths!

• The output of a neuron for a data item depends on the features of the input data item (and the
neuron’s parameters).

• We can think of the input to a neuron as the output of a previous linear.

• If the previous layer, after its weights are updated because of gradient descent, changes drastically its
output, the next layer will have its input changed drastically, so it will be forced to re-adjust its weights
drastically in turn at the next step of gradient descent.

• The phenomenon by which the distributions of internal nodes (neurons) of a neural network change is
referred to as Internal Covariate Shift. And we want to avoid it because it makes training the network
slower, as the neurons are forced to re-adjust drastically their weights in one direction or another
because of drastic changes in the outputs of the previous layers.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

A solution to jumping activations: layer
normalization!

a1 a2 a3

X =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

(10, 3)

𝜇1 𝜎1
2

𝜇 𝜎2

a'1 a'2 a'3

X’ =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

• Each item is updated with its normalized value, which will turn it
into a normal distribution with 0 mean and variance of 1.

• The two parameters gamma and beta are learnable
parameters that allow the model to “amplify” the scale of each
feature or apply a translation to the feature according to the
needs of the loss function.

With batch normalization we
normalize by columns (features)

With layer normalization we
normalize by rows (data items)

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Root Mean Square Normalization

Just like Layer Normalization, we also have a
learnable parameter gamma (g in the formula on
the left) that is multiplied by the normalized values.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Why RMSNorm?

• Requires less computation compared to Layer Normalization.

• It works well in practice.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

Let’s review Positional Encodings!

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is Rotary Positional Encoding?

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

What’s the difference between the absolute
positional encodings and the relative ones?

• Absolute positional encodings are fixed vectors that are added to the embedding of a token to represent its
absolute position in the sentence. So, it deals with one token at a time. You can think of it as the pair (latitude,
longitude) on a map: each point on earth will have a unique pair.

• Relative positional encodings, on the other hand, deals with two tokens at a time and it is involved when we calculate
the attention: since the attention mechanism captures the “intensity” of how much two words are related two each
other, relative positional encodings tells the attention mechanism the distance between the two words involved in it.
So, given two tokens, we create a vector that represents their distance.

• Relative positional encodings were introduced in the following paper

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Absolute Positional Encodings
From “Attention is all you need”

Relative Positional Encodings
From “Self-Attention with relative
positional representations”

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: the inner product

• The dot product used in the attention mechanism is a type of inner product,
which can be through of as a generalization of the dot product.

• Can we find an inner product over the two vectors q (query) and k (key) used in
the attention mechanism that only depends on the two vectors and the relative
distance of the token they represent?

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: the inner product

• We can define a function g like the following that only depends on the on the two
embeddings vector q and k and their relative distance

* = Conjugate of the complex number

• Using Euler’s formula, we can write it into its matrix form.

Rotation matrix in a 2d space, hence the name rotary position embeddings

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: the rotation matrix

From Wolfram MathWorld: https://mathworld.wolfram.com/RotationMatrix.html

https://github.com/hkproj/pytorch-llama-notes
https://mathworld.wolfram.com/RotationMatrix.html

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: the general form

Since the matrix is sparse, it is not convenient to use it to compute the positional embeddings

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: the
computational-efficient form

• Given a token with embedding vector x, and the position m of the token inside
the sentence, this is how we compute the position embeddings for the token.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: long-term decay

The authors calculated an upper bound for the inner product by varying the distance between two
tokens and proved that it decays with the growth of the relative distance.
This means that the “intensity” of relationship between two tokens encoded with Rotary Positional
Embeddings will be numerically smaller as the distance between them grows.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: practical considerations

• The rotary position embeddings are only applied to the query and the keys, but not the values.

• The rotary position embeddings are applied after the vector q and k have been multiplied by the W
matrix in the attention mechanism, while in the vanilla transformer they’re applied before.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

Let’s review Self-Attention!

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is the KV Cache?

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task

• Imagine we want to train a model to write Dante
Alighieri’s Divine Comedy’s 5th Canto from the Inferno.

Amor, ch'al cor gentil ratto s'apprende,
prese costui de la bella persona
che mi fu tolta; e 'l modo ancor m'offende.

Amor, ch'a nullo amato amar perdona,
mi prese del costui piacer sì forte,
che, come vedi, ancor non m'abbandona.

Amor condusse noi ad una morte.
Caina attende chi a vita ci spense.

Love, that can quickly seize the gentle heart,
took hold of him because of the fair body
taken from me—how that was done still wounds me.

Love, that releases no beloved from loving,
took hold of me so strongly through his beauty
that, as you see, it has not left me yet.

Love led the two of us unto one death.
Caina waits for him who took our life.”

Source: https://digitaldante.columbia.edu/dante/divine-comedy/inferno/inferno-5/

https://github.com/hkproj/pytorch-llama-notes
https://digitaldante.columbia.edu/dante/divine-comedy/inferno/inferno-5/

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task

[SOS] Love that can quickly seize the gentle heart

Target

Input

Love that can quickly seize the gentle heart [EOS]

Training

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS]

Output

Input

Love

Inference
T = 1

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love

Output

Input

Love that

Inference
T = 2

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love that

Output

Input

Love that can

Inference
T = 3

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love that can

Output

Input

Love that can quickly

Inference
T = 4

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love that can quickly

Output

Input

Love that can quickly seize

Inference
T = 5

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love that can quickly seize

Output

Input

Love that can quickly seize the

Inference
T = 6

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love that can quickly seize the

Output

Input

Love that can quickly seize the gentle

Inference
T = 7

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love that can quickly seize the gentle

Output

Input

Love that can quickly seize the gentle heart

Inference
T = 8

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Next Token Prediction Task: Inference

[SOS] Love that can quickly seize the gentle heart

Output

Input

Love that can quickly seize the gentle heart [EOS]

Inference
T = 9

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

• At every step of the inference, we are only interested in the last token output by the model, because we already
have the previous ones. However, the model needs access to all the previous tokens to decide on which token to
output, since they constitute its context (or the “prompt”).

• Is there a way to make the model do less computation on the token it has already seen during inference?
YES! The solution is the KV cache!

Next Token Prediction Task: the motivation
behind the KV cache

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention during Next Token Prediction Task

TOKEN 1

TOKEN 2

TOKEN 3

TOKEN 4

TOKEN 5

TOKEN 6

TOKEN 7

TOKEN 8

TOKEN 9

T
O
K
E
N
1

T
O
K
E
N
2

T
O
K
E
N
3

T
O
K
E
N
4

T
O
K
E
N
5

T
O
K
E
N
6

T
O
K
E
N
7

T
O
K
E
N
8

T
O
K
E
N
9

𝑋 =

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

T
1
-
T
1

TOKEN 1

TOKEN 2

TOKEN 3

TOKEN 4

TOKEN 5

TOKEN 6

TOKEN 7

TOKEN 8

TOKEN 9

ATTENTION 1

ATTENTION 2

ATTENTION 3

ATTENTION 4

ATTENTION 5

ATTENTION 6

ATTENTION 7

ATTENTION 8

ATTENTION 9

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(9, 4096) (4096, 9)

(9, 9)

(9, 4096) (9, 4096)

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention during Next Token Prediction Task

TOKEN 1

T
O
K
E
N
1

𝑋 =

T
1
-
T
1

TOKEN 1 ATTENTION 1

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(1, 4096) (4096, 1)

(1, 1)

(1, 4096) (1, 4096)

Inference
T = 1

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention during Next Token Prediction Task

TOKEN 1

TOKEN 2 T
O
K
E
N
1

T
O
K
E
N
2

𝑋 =

T
1
-
T
1

T
1
-
T
2

T
2
-
T
1

T
2
-
T
2

TOKEN 1

TOKEN 2

ATTENTION 1

ATTENTION 2

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(2, 4096) (4096, 2)

(2, 2)

(2, 4096) (2, 4096)

Inference
T = 2

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention during Next Token Prediction Task

TOKEN 1

TOKEN 2

TOKEN 3

T
O
K
E
N
1

T
O
K
E
N
2

T
O
K
E
N
3

𝑋 =

T
1
-
T
1

T
1
-
T
2

T
1
-
T
3

T
2
-
T
1

T
2
-
T
2

T
2
-
T
3

T
3
-
T
1

T
3
-
T
2

T
3
-
T
3

TOKEN 1

TOKEN 2

TOKEN 3

ATTENTION 1

ATTENTION 2

ATTENTION 3

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(3, 4096) (4096, 3)

(3, 3)

(3, 4096) (3, 4096)

Inference
T = 3

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention during Next Token Prediction Task

TOKEN 1

TOKEN 2

TOKEN 3

TOKEN 4

T
O
K
E
N
1

T
O
K
E
N
2

T
O
K
E
N
3

T
O
K
E
N
4

𝑋 =

T
1
-
T
1

T
1
-
T
2

T
1
-
T
3

T
1
-
T
4

T
2
-
T
1

T
2
-
T
2

T
2
-
T
3

T
2
-
T
4

T
3
-
T
1

T
3
-
T
2

T
3
-
T
3

T
3
-
T
4

T
4
-
T
1

T
4
-
T
2

T
4
-
T
3

T
4
-
T
4

TOKEN 1

TOKEN 2

TOKEN 3

TOKEN 4

ATTENTION 1

ATTENTION 2

ATTENTION 3

ATTENTION 4
𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(4, 4096) (4096, 4)

(4, 4)

(4, 4096) (4, 4096)

Inference
T = 4

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

TOKEN 1

TOKEN 2

TOKEN 3

TOKEN 4

T
O
K
E
N
1

T
O
K
E
N
2

T
O
K
E
N
3

T
O
K
E
N
4

𝑋 =

T
1
-
T
1

T
1
-
T
2

T
1
-
T
3

T
1
-
T
4

T
2
-
T
1

T
2
-
T
2

T
2
-
T
3

T
2
-
T
4

T
3
-
T
1

T
3
-
T
2

T
3
-
T
3

T
3
-
T
4

T
4
-
T
1

T
4
-
T
2

T
4
-
T
3

T
4
-
T
4

TOKEN 1

TOKEN 2

TOKEN 3

TOKEN 4

ATTENTION 1

ATTENTION 2

ATTENTION 3

ATTENTION 4
𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(4, 4096) (4096, 4)

(4, 4)

(4, 4096) (4, 4096)

Inference
T = 4

3. We don’t care about these, as we want to predict the
next token and we already predicted the previous ones.

2. Since the model is causal, we don’t care about the attention
of a token with its successors, but only with the tokens before it.

1. We already computed these dot products
In the previous steps. Can we cache them?

4. We are only interested
In this last row!

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention with KV-Cache

TOKEN 1

T
O
K
E
N
1

𝑋 =

T
1
-
T
1

TOKEN 1 ATTENTION 1

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(1, 4096) (4096, 1)

(1, 1)

(1, 4096) (1, 4096)

Inference
T = 1

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention with KV-Cache

TOKEN 2

T
O
K
E
N
1

T
O
K
E
N
2

𝑋 =

T
2
-
T
1

T
2
-
T
2

TOKEN 1

TOKEN 2

ATTENTION 2

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(1, 4096) (4096, 2)

(1, 2)

(2, 4096) (1, 4096)

Inference
T = 2

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention with KV-Cache

TOKEN 3

T
O
K
E
N
1

T
O
K
E
N
2

T
O
K
E
N
3

𝑋 =

T
3
-
T
1

T
3
-
T
2

T
3
-
T
3

ATTENTION 3

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(1, 4096) (4096, 3)

(1, 3)

(3, 4096) (1, 4096)

Inference
T = 3

TOKEN 1

TOKEN 2

TOKEN 3

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention with KV-Cache

TOKEN 4

T
O
K
E
N
1

T
O
K
E
N
2

T
O
K
E
N
3

T
O
K
E
N
4

𝑋 =

T
4
-
T
1

T
4
-
T
2

T
4
-
T
3

T
4
-
T
4

TOKEN 1

TOKEN 2

TOKEN 3

TOKEN 4

ATTENTION 4

𝑋 =

𝑄 𝐾𝑇

𝑄𝐾𝑇

𝑉 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

(1, 4096) (4096, 4)

(1, 4)

(4, 4096) (1, 4096)

Inference
T = 4

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is Grouped Multi-Query Attention?

Before we talk about Grouped MQA, we need to
introduce its predecessor, the Multi-Query
Attention (MQA)

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

GPUs have a “problem”: they’re too fast.

• In recent years, GPUs have become very fast at performing calculations, insomuch that the
speed of computation (FLOPs) is much higher than the memory bandwidth (GB/s) or speed of
data transfer between memory areas. For example, an NVIDIA A100 can perform 19.5 TFLOPs
while having a memory bandwidth of 2TB/s.

• This means that sometimes the bottleneck is not how many operations we perform, but how
much data transfer our operations need, and that depends on the size and the quantity of the
tensors involved in our calculations.

• For example, computing the same operation on the same tensor N times may be faster than
computing the same operation on N different tensors, even if they have the same size, this is
because the GPU may need to move the tensors around.

• This means that our goal should not only be to optimize the number of operations we do,
but also minimize the memory access/transfers that we perform.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Introducing Multi-Query Attention

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Comparing different attention algorithms:
vanilla batched multi-head attention

• Multihead Attention as presented in the original paper
“Attention is all you need”.

• By setting 𝑚 = 𝑛 (sequence length of query = seq. length of
keys and values)

• The number of arithmetic operations performed is 𝑂(𝑏𝑛𝑑2)

• The total memory involved in the operations, given by the
sum of all the tensors involved in the calculations (including
the derived ones!) is 𝑂 𝑏𝑛𝑑 + 𝑏ℎ𝑛2 + 𝑑2

• The ratio between the total memory and the number of

arithmetic operations is 𝑂(
1

𝑘
+

1

𝑏𝑛
)

• In this case, the ratio is much smaller than 1, which means that
the number of memory access we are performing is much less
than the number of arithmetic operations, so the memory
access is not the bottleneck here.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Comparing different attention algorithms:
batched multi-head attention with KV cache

• Uses the KV cache to reduce the number of operations
performed.

• By setting 𝑚 = 𝑛 (sequence length of query = seq. length of
keys and values)

• The number of arithmetic operations performed is 𝑂(𝑏𝑛𝑑2)

• The total memory involved in the operations, given by the
sum of all the tensors involved in the calculations (including
the derived ones!) is 𝑂 𝑏𝑛2𝑑 + 𝑛𝑑2

• The ratio between the total memory and the number of

arithmetic operations is 𝑂(
𝑛

𝑑
+

1

𝑏
)

• When 𝑛 ≈ 𝑑 (the sequence length is close to the size of the
embedding vector) or 𝑏 ≈ 1 (the batch size is 1), the ratio
becomes 1 and the memory access now becomes the
bottleneck of the algorithm. For the batch size is not a
problem, since it is generally much higher than 1, while for the
𝑛

𝑑
 term, we need to reduce the sequence length. But there’s a

better way…

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Comparing different attention algorithms:
multi-query attention with KV cache

• We remove the ℎ dimension from the 𝐾 and the 𝑉, while
keeping it for the 𝑄. This means that all the different query
heads will share the same keys and values.

• The number of arithmetic operations performed is
𝑂(𝑏𝑛𝑑2)

• The total memory involved in the operations, given by the
sum of all the tensors involved in the calculations
(including the derived ones!) is 𝑂 𝑏𝑛𝑑 + 𝑏𝑛2𝑘 + 𝑛𝑑2

• The ratio between the total memory and the number of

arithmetic operations is 𝑂(
1

𝑑
+

𝑛

𝑑ℎ
+

1

𝑏
)

• Comparing with the previous approach, we have reduced
the expensive term

𝑛

𝑑
 by a factor of ℎ.

• The performance gains are important, while the model’s
quality degrades only a little bit.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Speed & Quality comparisons

BLEU score on a translation task (English – German)

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is Grouped Multi-Query Attention?

Now, let’s talk about Grouped MQA!

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Grouped Multi-Query Attention: a compromise
between two extremes.

Multi-Head Attention

• High quality
• Computationally slow

Multi-Query Attention

• Loss in quality
• Computationally fast

Grouped Multi-Query Attention

• A good compromise between quality and
speed

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention)
with KV Cache

Q VK Rotary
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is the SwiGLU activation function?

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

SwiGLU Activation Function

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

SwiGLU Activation Function

• The author compared the performance of a Transformer model by using different activation functions in the Feed-Forward layer of the
Transformer architecture.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

SwiGLU Activation Function

Transformer (“Attention is all you need”)

LLaMA

We use the swish function with 𝛽 = 1. In this case it’s called the Sigmoid Linear
Unit (SiLU) function.

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

How well does it perform?

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Why SwiGLU works so well?

https://github.com/hkproj/pytorch-llama-notes

Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Thanks for watching!
Don’t forget to subscribe for
more amazing content on AI
and Machine Learning!

https://github.com/hkproj/pytorch-llama-notes

	Slide 1: LLaMA from scratch (LLaMA 1 and LLaMA 2)
	Slide 2
	Slide 3: Transformer vs LLaMA
	Slide 4: Models (LLaMA 1)
	Slide 5: Models (LLaMA 2)
	Slide 6: Let’s review the Embeddings!
	Slide 7: What is normalization?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Let’s review Positional Encodings!
	Slide 17: What is Rotary Positional Encoding?
	Slide 18: What’s the difference between the absolute positional encodings and the relative ones?
	Slide 19
	Slide 20: Rotary Position Embeddings
	Slide 21: Rotary Position Embeddings: the inner product
	Slide 22: Rotary Position Embeddings: the inner product
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Rotary Position Embeddings: practical considerations
	Slide 28: Let’s review Self-Attention!
	Slide 29: What is the KV Cache?
	Slide 30: Next Token Prediction Task
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: What is Grouped Multi-Query Attention?
	Slide 54: GPUs have a “problem”: they’re too fast.
	Slide 55: Introducing Multi-Query Attention
	Slide 56: Comparing different attention algorithms: vanilla batched multi-head attention
	Slide 57: Comparing different attention algorithms: batched multi-head attention with KV cache
	Slide 58: Comparing different attention algorithms: multi-query attention with KV cache
	Slide 59: Speed & Quality comparisons
	Slide 60: What is Grouped Multi-Query Attention?
	Slide 61: Grouped Multi-Query Attention: a compromise between two extremes.
	Slide 62: What is the SwiGLU activation function?
	Slide 63: SwiGLU Activation Function
	Slide 64: SwiGLU Activation Function
	Slide 65: SwiGLU Activation Function
	Slide 66
	Slide 67: Why SwiGLU works so well?
	Slide 68: Thanks for watching! Don’t forget to subscribe for more amazing content on AI and Machine Learning!

