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Prerequisites

• Structure of the Transformer model and 
how the attention mechanism works.

• Training and inference of a Transformer 
model

• Linear Algebra: matrix multiplication, dot 
product

• Complex numbers: Euler’s formula (not 
fundamental, nice to have)

Topics

• Architectural differences between the 
vanilla Transformer and LLaMA

• RMS Normalization (with review of Layer 
Normalization)

• Rotary Positional Embeddings

• KV-Cache

• Multi-Query Attention

• Grouped Multi-Query Attention

• SwiGLU Activation Function

Sometimes, in order to introduce the topic, I will review 
concepts that you may already be familiar with. Feel 
free to skip those parts.
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Models (LLaMA 1)
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Models (LLaMA 2)
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LLaMA
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Let’s review the Embeddings!
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What is normalization?
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Input Output

Hidden Layer 1 Hidden Layer 2

Loss

Target

What is normalization?
Let’s review neural networks
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Raw Material Output

Hardware Team Software Team

Loss

Target

A simple parallel: the bad CEO in a phone 
factory
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What is normalization?
Let’s review neural networks’ maths!

Suppose we have a linear layer, defined as nn.Linear(in_features=3, out_features=5, bias=True). This linear layer will create two matrices, called W (weight) 
and b (bias). If we have an input X of shape (10, 3) the output O will be (10, 5). But how does this happen mathematically?

X =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

W = b =

n1 n2 n3 n4 n5

O =

Item 1

f1 f2 f3 f4 f5

Item 2

Item 3

Item 10

Each neurons has 3 weights, one for each of the input feature
Each neuron  has 1 bias that is added

𝑶 = 𝑿𝑾𝑻 + 𝒃

n1

n4

n3

n2

n5

*We usually apply a non-linearity
to the output matrix O

(10, 3) (5, 3) (1, 5) (10, 5)
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Let’s review neural networks’ maths!

a1 a2 a3

X =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

𝑾𝑻 =

𝑶 = 𝑿𝑾𝑻 + 𝒃

w1

w2

w3

n1 n4n3n2 n5

𝑿𝑾𝑻 = 

r1Item 1

f1 f2 f3 f4 f5

Item 2

Item 3

Item 10

b

1
b =

n1 n2 n3 n4 n5

+

The bias vector will be broadcasted to every
row in the 𝑋𝑊𝑇 table.

O = 

z1Item 1

f1 f2 f3 f4 f5

Item 2

Item 3

Item 10

(10, 3) (3, 5) (10, 5)

(1, 5)

(10, 5)

𝑧1 =  (𝑟1 + 𝑏1) =  (σ𝑖=1
3 𝑎𝑖𝑤𝑖 + 𝑏1)

The output of the neuron 1 for the item 1 only depends on the 
features of the item 1. Usually we apply a non-linearity like the ReLU 
function to the output 𝑧1. 𝑧1 is referred to as the activation of the 
neuron 1 w.r.t the data item 1.
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Let’s review neural networks’ maths!

• The output of a neuron for a data item depends on the features of the input data item (and the 
neuron’s parameters).

• We can think of the input to a neuron as the output of a previous linear.

• If the previous layer, after its weights are updated because of gradient descent, changes drastically its 
output, the next layer will have its input changed drastically, so it will be forced to re-adjust its weights 
drastically in turn at the next step of gradient descent.

• The phenomenon by which the distributions of internal nodes (neurons) of a neural network change is 
referred to as Internal Covariate Shift. And we want to avoid it because it makes training the network 
slower, as the neurons are forced to re-adjust drastically their weights in one direction or another 
because of drastic changes in the outputs of the previous layers.

https://github.com/hkproj/pytorch-llama-notes
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A solution to jumping activations: layer 
normalization!

a1 a2 a3

X =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

(10, 3)

𝜇1 𝜎1
2

𝜇 𝜎2

a'1 a'2 a'3

X’ =

Item 1

Item 2

Item 3

Item 10

f1 f2 f3

• Each item is updated with its normalized value, which will turn it 
into a normal distribution with 0 mean and variance of 1.

• The two parameters gamma and beta are learnable 
parameters that allow the model to “amplify” the scale of each 
feature or apply a translation to the feature according to the 
needs of the loss function.

With batch normalization we 
normalize by columns (features)

With layer normalization we  
normalize by rows (data items)
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Root Mean Square Normalization

Just like Layer Normalization, we also have a 
learnable parameter gamma (g in the formula on 
the left) that is multiplied by the normalized values.

https://github.com/hkproj/pytorch-llama-notes
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Why RMSNorm?

• Requires less computation compared to Layer Normalization.

• It works well in practice.
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Let’s review Positional Encodings!
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What is Rotary Positional Encoding?
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What’s the difference between the absolute 
positional encodings and the relative ones?

• Absolute positional encodings are fixed vectors that are added to the embedding of a token to represent its 
absolute position in the sentence. So, it deals with one token at a time. You can think of it as the pair (latitude, 
longitude) on a map: each point on earth will have a unique pair.

• Relative positional encodings, on the other hand, deals with two tokens at a time and it is involved when we calculate 
the attention: since the attention mechanism captures the “intensity” of how much two words are related two each 
other, relative positional encodings tells the attention mechanism the distance between the two words involved in it. 
So, given two tokens, we create a vector that represents their distance.

• Relative positional encodings were introduced in the following paper 

https://github.com/hkproj/pytorch-llama-notes
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Absolute Positional Encodings
From “Attention is all you need”

Relative Positional Encodings
From “Self-Attention with relative 
positional representations”
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Rotary Position Embeddings
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Rotary Position Embeddings: the inner product

• The dot product used in the attention mechanism is a type of inner product, 
which can be through of as a generalization of the dot product. 

• Can we find an inner product over the two vectors q (query) and k (key) used in 
the attention mechanism that only depends on the two vectors and the relative 
distance of the token they represent?

https://github.com/hkproj/pytorch-llama-notes
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Rotary Position Embeddings: the inner product

• We can define a function g like the following that only depends on the on the two 
embeddings vector q and k and their relative distance

* = Conjugate of the complex number

• Using Euler’s formula, we can write it into its matrix form.

Rotation matrix in a 2d space, hence the name rotary position embeddings

https://github.com/hkproj/pytorch-llama-notes
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Rotary Position Embeddings: the rotation matrix

From Wolfram MathWorld: https://mathworld.wolfram.com/RotationMatrix.html

https://github.com/hkproj/pytorch-llama-notes
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Rotary Position Embeddings: the general form

Since the matrix is sparse, it is not convenient to use it to compute the positional embeddings

https://github.com/hkproj/pytorch-llama-notes


Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Rotary Position Embeddings: the 
computational-efficient form

• Given a token with embedding vector x, and the position m of the token inside 
the sentence, this is how we compute the position embeddings for the token.

https://github.com/hkproj/pytorch-llama-notes
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Rotary Position Embeddings: long-term decay

The authors calculated an upper bound for the inner product by varying the distance between two 
tokens and proved that it decays with the growth of the relative distance. 
This means that the “intensity” of relationship between two tokens encoded with Rotary Positional 
Embeddings will be numerically smaller as the distance between them grows.

https://github.com/hkproj/pytorch-llama-notes
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Rotary Position Embeddings: practical considerations

• The rotary position embeddings are only applied to the query and the keys, but not the values.

• The rotary position embeddings are applied after the vector q and k have been multiplied by the W 
matrix in the attention mechanism, while in the vanilla transformer they’re applied before.

https://github.com/hkproj/pytorch-llama-notes
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Let’s review Self-Attention!
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What is the KV Cache?
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Next Token Prediction Task

• Imagine we want to train a model to write Dante 
Alighieri’s Divine Comedy’s 5th Canto from the Inferno.

Amor, ch'al cor gentil ratto s'apprende,
prese costui de la bella persona
che mi fu tolta; e 'l modo ancor m'offende.

Amor, ch'a nullo amato amar perdona,
mi prese del costui piacer sì forte,
che, come vedi, ancor non m'abbandona.

Amor condusse noi ad una morte.
Caina attende chi a vita ci spense.

Love, that can quickly seize the gentle heart,
took hold of him because of the fair body
taken from me—how that was done still wounds me.

Love, that releases no beloved from loving,
took hold of me so strongly through his beauty
that, as you see, it has not left me yet.

Love led the two of us unto one death.
Caina waits for him who took our life.”

Source: https://digitaldante.columbia.edu/dante/divine-comedy/inferno/inferno-5/

https://github.com/hkproj/pytorch-llama-notes
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Next Token Prediction Task 

[SOS] Love that can quickly seize the gentle heart 

Target

Input

Love that can quickly seize the gentle heart [EOS]

Training
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Next Token Prediction Task: Inference

[SOS]

Output

Input

Love

Inference
T = 1
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Next Token Prediction Task: Inference

[SOS] Love

Output

Input

Love that

Inference
T = 2
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Next Token Prediction Task: Inference

[SOS] Love that

Output

Input

Love that can

Inference
T = 3
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Next Token Prediction Task: Inference

[SOS] Love that can

Output

Input

Love that can quickly

Inference
T = 4
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Next Token Prediction Task: Inference

[SOS] Love that can quickly

Output
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Inference
T = 5
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Next Token Prediction Task: Inference

[SOS] Love that can quickly seize
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Inference
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Next Token Prediction Task: Inference

[SOS] Love that can quickly seize the
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Input
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T = 7
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Next Token Prediction Task: Inference

[SOS] Love that can quickly seize the gentle

Output

Input

Love that can quickly seize the gentle heart

Inference
T = 8
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Next Token Prediction Task: Inference

[SOS] Love that can quickly seize the gentle heart 

Output

Input

Love that can quickly seize the gentle heart [EOS]

Inference
T = 9
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• At every step of the inference, we are only interested in the last token output by the model, because we already 
have the previous ones. However, the model needs access to all the previous tokens to decide on which token to 
output, since they constitute its context (or the “prompt”).

• Is there a way to make the model do less computation on the token it has already seen during inference?
YES! The solution is the KV cache!

Next Token Prediction Task: the motivation 
behind the KV cache

https://github.com/hkproj/pytorch-llama-notes
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Self-Attention during Next Token Prediction Task
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Self-Attention during Next Token Prediction Task
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Inference
T = 1
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Self-Attention during Next Token Prediction Task
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Self-Attention during Next Token Prediction Task
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T = 3

https://github.com/hkproj/pytorch-llama-notes


Umar Jamil – https://github.com/hkproj/pytorch-llama-notes

Self-Attention during Next Token Prediction Task
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Inference
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
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Inference
T = 4

3. We don’t care about these, as we want to predict the 
next token and we already predicted the previous ones.

2. Since the model is causal, we don’t care about the attention
of a token with its successors, but only with the tokens before it.

1. We already computed these dot products
In the previous steps. Can we cache them?

4. We are only interested
In this last row!
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Self-Attention with KV-Cache
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T = 1
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Self-Attention with KV-Cache
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T = 2
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Self-Attention with KV-Cache
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Self-Attention with KV-Cache
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LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention) 
with KV Cache

Q VK Rotary 
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is Grouped Multi-Query Attention?

Before we talk about Grouped MQA, we need to 
introduce its predecessor, the Multi-Query 
Attention (MQA)
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GPUs have a “problem”: they’re too fast.

• In recent years, GPUs have become very fast at performing calculations, insomuch that the 
speed of computation (FLOPs) is much higher than the memory bandwidth (GB/s) or speed of 
data transfer between memory areas. For example, an NVIDIA A100 can perform 19.5 TFLOPs 
while having a memory bandwidth of 2TB/s.

• This means that sometimes the bottleneck is not how many operations we perform, but how 
much data transfer our operations need, and that depends on the size and the quantity of the 
tensors involved in our calculations.

• For example, computing the same operation on the same tensor N times may be faster than 
computing the same operation on N different tensors, even if they have the same size, this is 
because the GPU may need to move the tensors around.

• This means that our goal should not only be to optimize the number of operations we do, 
but also minimize the memory access/transfers that we perform.
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Introducing Multi-Query Attention
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Comparing different attention algorithms: 
vanilla batched multi-head attention

• Multihead Attention as presented in the original paper 
“Attention is all you need”.

• By setting 𝑚 =  𝑛 (sequence length of query = seq. length of 
keys and values)

• The number of arithmetic operations performed is 𝑂(𝑏𝑛𝑑2)

• The total memory involved in the operations, given by the 
sum of all the tensors involved in the calculations (including 
the derived ones!) is 𝑂 𝑏𝑛𝑑 + 𝑏ℎ𝑛2 +  𝑑2

• The ratio between the total memory and the number of 

arithmetic operations is 𝑂(
1

𝑘
+

1

𝑏𝑛
)

• In this case, the ratio is much smaller than 1, which means that 
the number of memory access we are performing is much less 
than the number of arithmetic operations, so the memory 
access is not the bottleneck here.
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Comparing different attention algorithms: 
batched multi-head attention with KV cache

• Uses the KV cache to reduce the number of operations 
performed.

• By setting 𝑚 =  𝑛 (sequence length of query = seq. length of 
keys and values)

• The number of arithmetic operations performed is 𝑂(𝑏𝑛𝑑2)

• The total memory involved in the operations, given by the 
sum of all the tensors involved in the calculations (including 
the derived ones!) is 𝑂 𝑏𝑛2𝑑 + 𝑛𝑑2

• The ratio between the total memory and the number of 

arithmetic operations is 𝑂(
𝑛

𝑑
+

1

𝑏
)

• When 𝑛 ≈ 𝑑 (the sequence length is close to the size of the 
embedding vector) or 𝑏 ≈ 1 (the batch size is 1), the ratio 
becomes 1 and the memory access now becomes the 
bottleneck of the algorithm. For the batch size is not a 
problem, since it is generally much higher than 1, while for the 
𝑛

𝑑
 term, we need to reduce the sequence length. But there’s a 

better way…
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Comparing different attention algorithms: 
multi-query attention with KV cache

• We remove the ℎ dimension from the 𝐾 and the 𝑉, while 
keeping it for the 𝑄. This means that all the different query 
heads will share the same keys and values.

• The number of arithmetic operations performed is 
𝑂(𝑏𝑛𝑑2)

• The total memory involved in the operations, given by the 
sum of all the tensors involved in the calculations 
(including the derived ones!) is 𝑂 𝑏𝑛𝑑 + 𝑏𝑛2𝑘 + 𝑛𝑑2

• The ratio between the total memory and the number of 

arithmetic operations is 𝑂(
1

𝑑
+

𝑛

𝑑ℎ
+

1

𝑏
)

• Comparing with the previous approach, we have reduced 
the expensive term 

𝑛

𝑑
 by a factor of ℎ.

• The performance gains are important, while the model’s 
quality degrades only a little bit.
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Speed & Quality comparisons

BLEU score on a translation task (English – German)
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LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention) 
with KV Cache

Q VK Rotary 
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is Grouped Multi-Query Attention?

Now, let’s talk about Grouped MQA!
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Grouped Multi-Query Attention: a compromise 
between two extremes.

Multi-Head Attention

• High quality
• Computationally slow

Multi-Query Attention

• Loss in quality
• Computationally fast

Grouped Multi-Query Attention

• A good compromise between quality and 
speed
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LLaMA

Input

Embeddings

RMS Norm

Self-Attention (Grouped Multi-Query Attention) 
with KV Cache

Q VK Rotary 
Positional Encodings

RMS Norm

Feed Forward
SwiGLU

RMS Norm

Linear

Softmax

Nx

What is the SwiGLU activation function?
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SwiGLU Activation Function
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SwiGLU Activation Function

• The author compared the performance of a Transformer model by using different activation functions in the Feed-Forward layer of the 
Transformer architecture.
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SwiGLU Activation Function

Transformer (“Attention is all you need”)

LLaMA

We use the swish function with 𝛽 = 1. In this case it’s called the Sigmoid Linear 
Unit (SiLU) function.
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How well does it perform?
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Why SwiGLU works so well?
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Thanks for watching!
Don’t forget to subscribe for 
more amazing content on AI 
and Machine Learning!
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