--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistral-community/Mixtral-8x22B-v0.1 model-index: - name: qlora-out-2048-multiling results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistral-community/Mixtral-8x22B-v0.1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: lightblue/gpt4_conversations_multilingual type: sharegpt conversation: mistral dataset_prepared_path: ./prepared_dataset_2048-multiling val_set_size: 0 output_dir: ./qlora-out-2048-multiling ## You can optionally freeze the entire model and unfreeze a subset of parameters unfrozen_parameters: # - ^lm_head.weight$ # - ^model.embed_tokens.weight$[:32000] # - model.layers.2[0-9]+.block_sparse_moe.gate # - model.layers.2[0-9]+.block_sparse_moe.experts # - model.layers.3[0-9]+.block_sparse_moe.gate # - model.layers.3[0-9]+.block_sparse_moe.experts model_config: output_router_logits: true adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: #lora_target_modules: # - gate # - q_proj # - k_proj # - v_proj # - o_proj # - w1 # - w2 # - w3 gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 use_wandb: true wandb_project: axolotl wandb_entity: peterd wandb_name: mixtral_8x22b_test train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 0 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 5 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# qlora-out-2048-multiling This model is a fine-tuned version of [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0