pumpitup521
commited on
Commit
•
1ca957e
1
Parent(s):
89bb632
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.40 +/- 0.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6197f9196681739cde4273d8b95405b502148c04507e5395ebfe384e51e6da6
|
3 |
+
size 108063
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9263c911b0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9263c949c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1685671591105143038,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKRzYPo1WDD2DkB0/KRzYPo1WDD2DkB0/KRzYPo1WDD2DkB0/KRzYPo1WDD2DkB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6KhoPm5diT/+Hla+s31Xvza9rL/ouhW/Mhcbv4aaQL8U09q/tBrTP+2amb/BD9E/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAApHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbspHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbspHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbspHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.42208984 0.03426223 0.6154863 ]\n [0.42208984 0.03426223 0.6154863 ]\n [0.42208984 0.03426223 0.6154863 ]\n [0.42208984 0.03426223 0.6154863 ]]",
|
38 |
+
"desired_goal": "[[ 0.22720683 1.0731637 -0.2091026 ]\n [-0.84176177 -1.3495243 -0.5848832 ]\n [-0.6058227 -0.75235784 -1.7095666 ]\n [ 1.6492524 -1.2000405 1.6332933 ]]",
|
39 |
+
"observation": "[[ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]\n [ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]\n [ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]\n [ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfuwNvhpVIT3B+R0++/jWPd+TH7vqFz0+nsv/vO6rCr2YqYc+t0HBPXaVtL3Hqko+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.13859746 0.0393878 0.15427305]\n [ 0.10496708 -0.00243496 0.18466154]\n [-0.03122502 -0.03385537 0.26496577]\n [ 0.09436362 -0.0881757 0.19791709]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/vDz34PX4L+UhpRSlIwBbJRLMowBdJRHQKen9lRP4211fZQoaAZoCWgPQwhdNjrnpzjUv5SGlFKUaBVLMmgWR0Cnp6ZsKsuGdX2UKGgGaAloD0MIIxYx7DCm4b+UhpRSlGgVSzJoFkdAp6dW16Vt43V9lChoBmgJaA9DCIrnbAGhdeC/lIaUUpRoFUsyaBZHQKenBfsu3+d1fZQoaAZoCWgPQwh4Y0FhUKbSv5SGlFKUaBVLMmgWR0CnqSAQHzH0dX2UKGgGaAloD0MIoDcVqTC227+UhpRSlGgVSzJoFkdAp6jQUvf0mXV9lChoBmgJaA9DCDFcHQBxV9u/lIaUUpRoFUsyaBZHQKeogMDOkcl1fZQoaAZoCWgPQwjhC5OpgtHhv5SGlFKUaBVLMmgWR0CnqC/FBIFvdX2UKGgGaAloD0MIe6GA7WDE3r+UhpRSlGgVSzJoFkdAp6o+kP+XJHV9lChoBmgJaA9DCJcA/FOqxOe/lIaUUpRoFUsyaBZHQKep7rN4Z/F1fZQoaAZoCWgPQwhXzt4ZbVXYv5SGlFKUaBVLMmgWR0CnqZ8gyM1kdX2UKGgGaAloD0MIhjqscMtH4b+UhpRSlGgVSzJoFkdAp6lOOhkAgnV9lChoBmgJaA9DCJyk+WNam9O/lIaUUpRoFUsyaBZHQKerXZ+x4Y91fZQoaAZoCWgPQwhkrDb/rzrXv5SGlFKUaBVLMmgWR0Cnqw2XTmW/dX2UKGgGaAloD0MIWHVWC+wx1L+UhpRSlGgVSzJoFkdAp6q99BrvcHV9lChoBmgJaA9DCCR/MPDce9+/lIaUUpRoFUsyaBZHQKeqbP/rB0p1fZQoaAZoCWgPQwilFHR7SWPbv5SGlFKUaBVLMmgWR0CnrJU8/2TQdX2UKGgGaAloD0MI9Q63Q8Niyr+UhpRSlGgVSzJoFkdAp6xF92HLzXV9lChoBmgJaA9DCLq9pDFaR9m/lIaUUpRoFUsyaBZHQKer91bJOnF1fZQoaAZoCWgPQwjj4xOy8zbhv5SGlFKUaBVLMmgWR0Cnq6dgF5fMdX2UKGgGaAloD0MIkEqxo3Go7L+UhpRSlGgVSzJoFkdAp65pufmLcnV9lChoBmgJaA9DCOYEbXL4JOm/lIaUUpRoFUsyaBZHQKeuGtRvWH11fZQoaAZoCWgPQwhwlLw6xwDiv5SGlFKUaBVLMmgWR0CnrcwVj7Q+dX2UKGgGaAloD0MIUTBjCtY45L+UhpRSlGgVSzJoFkdAp61726ClJ3V9lChoBmgJaA9DCM7BM6FJYuq/lIaUUpRoFUsyaBZHQKeweIAwPAh1fZQoaAZoCWgPQwhuxJPdzOjhv5SGlFKUaBVLMmgWR0CnsCl+3H7xdX2UKGgGaAloD0MIoGtfQC/c5b+UhpRSlGgVSzJoFkdAp6/avJRwZXV9lChoBmgJaA9DCEzfawiOy+K/lIaUUpRoFUsyaBZHQKevip5u63B1fZQoaAZoCWgPQwhvKlJhbKHvv5SGlFKUaBVLMmgWR0CnsmR0dRzjdX2UKGgGaAloD0MIqrhxi/m5y7+UhpRSlGgVSzJoFkdAp7IVyimEXnV9lChoBmgJaA9DCPInKhvWVNu/lIaUUpRoFUsyaBZHQKexx2gWac91fZQoaAZoCWgPQwi4HRoWo67Qv5SGlFKUaBVLMmgWR0CnsXdtl7MQdX2UKGgGaAloD0MI/Knx0k3i8b+UhpRSlGgVSzJoFkdAp7RpQSBbwHV9lChoBmgJaA9DCKsgBrr2Beq/lIaUUpRoFUsyaBZHQKe0Gvf0mMR1fZQoaAZoCWgPQwidf7vs153cv5SGlFKUaBVLMmgWR0Cns8yw4bS7dX2UKGgGaAloD0MI2qhOB7Ie5b+UhpRSlGgVSzJoFkdAp7N9bcGke3V9lChoBmgJaA9DCJKx2vy/6uG/lIaUUpRoFUsyaBZHQKe2Zm9QGfR1fZQoaAZoCWgPQwg4gem0boPYv5SGlFKUaBVLMmgWR0Cnthd6kZaWdX2UKGgGaAloD0MIZyyazk4G2L+UhpRSlGgVSzJoFkdAp7XI3FUADXV9lChoBmgJaA9DCPg2/dmPFN2/lIaUUpRoFUsyaBZHQKe1eMrmQsB1fZQoaAZoCWgPQwh9XvHUIw3cv5SGlFKUaBVLMmgWR0CnuDuxSpBHdX2UKGgGaAloD0MIfuGVJM/117+UhpRSlGgVSzJoFkdAp7frxmTTv3V9lChoBmgJaA9DCLg7a7dd6OG/lIaUUpRoFUsyaBZHQKe3nDNQj2V1fZQoaAZoCWgPQwiQvHMoQ1Xav5SGlFKUaBVLMmgWR0Cnt0tG/etTdX2UKGgGaAloD0MIyH2rdeJy3L+UhpRSlGgVSzJoFkdAp7lV+Zw4sHV9lChoBmgJaA9DCGcpWU5C6d6/lIaUUpRoFUsyaBZHQKe5Bh1DBuZ1fZQoaAZoCWgPQwiPboRFRZzOv5SGlFKUaBVLMmgWR0CnuLaN+9amdX2UKGgGaAloD0MIUOCdfHps07+UhpRSlGgVSzJoFkdAp7hloDgZTHV9lChoBmgJaA9DCMr6zcR0Iea/lIaUUpRoFUsyaBZHQKe6aE384xV1fZQoaAZoCWgPQwgaijve5Lfcv5SGlFKUaBVLMmgWR0Cnuhhdt2s8dX2UKGgGaAloD0MIF5zB3y9m67+UhpRSlGgVSzJoFkdAp7nI1P3ztnV9lChoBmgJaA9DCK6ek943PuC/lIaUUpRoFUsyaBZHQKe5d+az/qB1fZQoaAZoCWgPQwiXxcTm41rtv5SGlFKUaBVLMmgWR0Cnu37KifxudX2UKGgGaAloD0MIxF4oYDuY5b+UhpRSlGgVSzJoFkdAp7sux+rlvXV9lChoBmgJaA9DCJxOstXlFOK/lIaUUpRoFUsyaBZHQKe63yVfNRp1fZQoaAZoCWgPQwiWlpF6T+Xbv5SGlFKUaBVLMmgWR0Cnuo4ku6ErdX2UKGgGaAloD0MIe7yQDg9h5L+UhpRSlGgVSzJoFkdAp7yO63AmA3V9lChoBmgJaA9DCGDI6lbPSeC/lIaUUpRoFUsyaBZHQKe8PwJgLJF1fZQoaAZoCWgPQwh0JQLVP4jSv5SGlFKUaBVLMmgWR0Cnu+9jXnQqdX2UKGgGaAloD0MIzVZe8j/54r+UhpRSlGgVSzJoFkdAp7uebPQfIXV9lChoBmgJaA9DCK685H/yd+m/lIaUUpRoFUsyaBZHQKe9yIeHSF51fZQoaAZoCWgPQwg+zF62nbbkv5SGlFKUaBVLMmgWR0CnvXiZF5OadX2UKGgGaAloD0MIoWZIFcUr8L+UhpRSlGgVSzJoFkdAp70o+t8uz3V9lChoBmgJaA9DCMJsAgzLH+W/lIaUUpRoFUsyaBZHQKe82BoVVPx1fZQoaAZoCWgPQwj5ugz/6Qblv5SGlFKUaBVLMmgWR0CnvuCh37k5dX2UKGgGaAloD0MI8wGBzqTN5L+UhpRSlGgVSzJoFkdAp76Q1JlJ6XV9lChoBmgJaA9DCEg3wqIiTt+/lIaUUpRoFUsyaBZHQKe+QUzsQd11fZQoaAZoCWgPQwgNxLKZQ9Lmv5SGlFKUaBVLMmgWR0CnvfA5aNdadX2UKGgGaAloD0MIokYhyaze5L+UhpRSlGgVSzJoFkdAp7/p6Ww/xHV9lChoBmgJaA9DCEPJ5NTOMOG/lIaUUpRoFUsyaBZHQKe/mjlgc951fZQoaAZoCWgPQwgkYd9OIsLgv5SGlFKUaBVLMmgWR0Cnv0rHdXT3dX2UKGgGaAloD0MI3ze+9syS2L+UhpRSlGgVSzJoFkdAp776CUX533V9lChoBmgJaA9DCErOiT20j9q/lIaUUpRoFUsyaBZHQKfBBIT4+KV1fZQoaAZoCWgPQwikUBa+vtbbv5SGlFKUaBVLMmgWR0CnwLSeiBXkdX2UKGgGaAloD0MI7SsP0lPk4b+UhpRSlGgVSzJoFkdAp8BlEXtSh3V9lChoBmgJaA9DCF4sDJHT19i/lIaUUpRoFUsyaBZHQKfAFBSDRMN1fZQoaAZoCWgPQwhYcaq1MAvqv5SGlFKUaBVLMmgWR0Cnwhyz5XU6dX2UKGgGaAloD0MI7MGk+PiE7L+UhpRSlGgVSzJoFkdAp8HMulGgBnV9lChoBmgJaA9DCCWuY1xxcda/lIaUUpRoFUsyaBZHQKfBfRrrPdF1fZQoaAZoCWgPQwiJ7IMsCybRv5SGlFKUaBVLMmgWR0CnwSwRwqAjdX2UKGgGaAloD0MIv/IgPUWO47+UhpRSlGgVSzJoFkdAp8M0V58jRnV9lChoBmgJaA9DCIPb2sLzUs2/lIaUUpRoFUsyaBZHQKfC5GvOhTR1fZQoaAZoCWgPQwguGjIepRLdv5SGlFKUaBVLMmgWR0CnwpS6tknUdX2UKGgGaAloD0MIEY3uIHam4L+UhpRSlGgVSzJoFkdAp8JDzXjEN3V9lChoBmgJaA9DCAexM4XO6+K/lIaUUpRoFUsyaBZHQKfEUSAYpDx1fZQoaAZoCWgPQwixiGGHMenLv5SGlFKUaBVLMmgWR0CnxAE0BOpLdX2UKGgGaAloD0MIOGVuvhHd0r+UhpRSlGgVSzJoFkdAp8Oxle4TbnV9lChoBmgJaA9DCOWdQxmqYvG/lIaUUpRoFUsyaBZHQKfDYJzkp7V1fZQoaAZoCWgPQwg58Gq5M5Pkv5SGlFKUaBVLMmgWR0CnxYbXQMQVdX2UKGgGaAloD0MIvqPGhJhL1r+UhpRSlGgVSzJoFkdAp8U247Rv33V9lChoBmgJaA9DCARyiSMPRMy/lIaUUpRoFUsyaBZHQKfE51V5rxl1fZQoaAZoCWgPQwgJiEm4kMfqv5SGlFKUaBVLMmgWR0CnxJcZccENdX2UKGgGaAloD0MI4ng+A+rN2L+UhpRSlGgVSzJoFkdAp8ai0dBBzHV9lChoBmgJaA9DCNVBXg8mxea/lIaUUpRoFUsyaBZHQKfGUv/R3Nd1fZQoaAZoCWgPQwgD7Q4pBsjgv5SGlFKUaBVLMmgWR0CnxgNc4YJmdX2UKGgGaAloD0MIjPM3oRCB7b+UhpRSlGgVSzJoFkdAp8WyUeMho3V9lChoBmgJaA9DCLx6FRkdkNe/lIaUUpRoFUsyaBZHQKfHzOmixml1fZQoaAZoCWgPQwi+bDttjQjQv5SGlFKUaBVLMmgWR0Cnx30wztTldX2UKGgGaAloD0MItI8V/DbE3r+UhpRSlGgVSzJoFkdAp8ctvS+g13V9lChoBmgJaA9DCGBzDp4JTdG/lIaUUpRoFUsyaBZHQKfG3VhCtzV1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd4d56eaf3b9a91d451bbd769ddf9535a19a7c559850325c50f32c921f085904
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a24ffb98debd57448fc033bec9691bdc2fd6e509e20a6c4fdf3d197811e1a56
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9263c911b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9263c949c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685671591105143038, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKRzYPo1WDD2DkB0/KRzYPo1WDD2DkB0/KRzYPo1WDD2DkB0/KRzYPo1WDD2DkB0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6KhoPm5diT/+Hla+s31Xvza9rL/ouhW/Mhcbv4aaQL8U09q/tBrTP+2amb/BD9E/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAApHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbspHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbspHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbspHNg+jVYMPYOQHT/ZRbG7R8BDO4q8vbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42208984 0.03426223 0.6154863 ]\n [0.42208984 0.03426223 0.6154863 ]\n [0.42208984 0.03426223 0.6154863 ]\n [0.42208984 0.03426223 0.6154863 ]]", "desired_goal": "[[ 0.22720683 1.0731637 -0.2091026 ]\n [-0.84176177 -1.3495243 -0.5848832 ]\n [-0.6058227 -0.75235784 -1.7095666 ]\n [ 1.6492524 -1.2000405 1.6332933 ]]", "observation": "[[ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]\n [ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]\n [ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]\n [ 0.42208984 0.03426223 0.6154863 -0.00540994 0.00298692 -0.0057903 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfuwNvhpVIT3B+R0++/jWPd+TH7vqFz0+nsv/vO6rCr2YqYc+t0HBPXaVtL3Hqko+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13859746 0.0393878 0.15427305]\n [ 0.10496708 -0.00243496 0.18466154]\n [-0.03122502 -0.03385537 0.26496577]\n [ 0.09436362 -0.0881757 0.19791709]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/vDz34PX4L+UhpRSlIwBbJRLMowBdJRHQKen9lRP4211fZQoaAZoCWgPQwhdNjrnpzjUv5SGlFKUaBVLMmgWR0Cnp6ZsKsuGdX2UKGgGaAloD0MIIxYx7DCm4b+UhpRSlGgVSzJoFkdAp6dW16Vt43V9lChoBmgJaA9DCIrnbAGhdeC/lIaUUpRoFUsyaBZHQKenBfsu3+d1fZQoaAZoCWgPQwh4Y0FhUKbSv5SGlFKUaBVLMmgWR0CnqSAQHzH0dX2UKGgGaAloD0MIoDcVqTC227+UhpRSlGgVSzJoFkdAp6jQUvf0mXV9lChoBmgJaA9DCDFcHQBxV9u/lIaUUpRoFUsyaBZHQKeogMDOkcl1fZQoaAZoCWgPQwjhC5OpgtHhv5SGlFKUaBVLMmgWR0CnqC/FBIFvdX2UKGgGaAloD0MIe6GA7WDE3r+UhpRSlGgVSzJoFkdAp6o+kP+XJHV9lChoBmgJaA9DCJcA/FOqxOe/lIaUUpRoFUsyaBZHQKep7rN4Z/F1fZQoaAZoCWgPQwhXzt4ZbVXYv5SGlFKUaBVLMmgWR0CnqZ8gyM1kdX2UKGgGaAloD0MIhjqscMtH4b+UhpRSlGgVSzJoFkdAp6lOOhkAgnV9lChoBmgJaA9DCJyk+WNam9O/lIaUUpRoFUsyaBZHQKerXZ+x4Y91fZQoaAZoCWgPQwhkrDb/rzrXv5SGlFKUaBVLMmgWR0Cnqw2XTmW/dX2UKGgGaAloD0MIWHVWC+wx1L+UhpRSlGgVSzJoFkdAp6q99BrvcHV9lChoBmgJaA9DCCR/MPDce9+/lIaUUpRoFUsyaBZHQKeqbP/rB0p1fZQoaAZoCWgPQwilFHR7SWPbv5SGlFKUaBVLMmgWR0CnrJU8/2TQdX2UKGgGaAloD0MI9Q63Q8Niyr+UhpRSlGgVSzJoFkdAp6xF92HLzXV9lChoBmgJaA9DCLq9pDFaR9m/lIaUUpRoFUsyaBZHQKer91bJOnF1fZQoaAZoCWgPQwjj4xOy8zbhv5SGlFKUaBVLMmgWR0Cnq6dgF5fMdX2UKGgGaAloD0MIkEqxo3Go7L+UhpRSlGgVSzJoFkdAp65pufmLcnV9lChoBmgJaA9DCOYEbXL4JOm/lIaUUpRoFUsyaBZHQKeuGtRvWH11fZQoaAZoCWgPQwhwlLw6xwDiv5SGlFKUaBVLMmgWR0CnrcwVj7Q+dX2UKGgGaAloD0MIUTBjCtY45L+UhpRSlGgVSzJoFkdAp61726ClJ3V9lChoBmgJaA9DCM7BM6FJYuq/lIaUUpRoFUsyaBZHQKeweIAwPAh1fZQoaAZoCWgPQwhuxJPdzOjhv5SGlFKUaBVLMmgWR0CnsCl+3H7xdX2UKGgGaAloD0MIoGtfQC/c5b+UhpRSlGgVSzJoFkdAp6/avJRwZXV9lChoBmgJaA9DCEzfawiOy+K/lIaUUpRoFUsyaBZHQKevip5u63B1fZQoaAZoCWgPQwhvKlJhbKHvv5SGlFKUaBVLMmgWR0CnsmR0dRzjdX2UKGgGaAloD0MIqrhxi/m5y7+UhpRSlGgVSzJoFkdAp7IVyimEXnV9lChoBmgJaA9DCPInKhvWVNu/lIaUUpRoFUsyaBZHQKexx2gWac91fZQoaAZoCWgPQwi4HRoWo67Qv5SGlFKUaBVLMmgWR0CnsXdtl7MQdX2UKGgGaAloD0MI/Knx0k3i8b+UhpRSlGgVSzJoFkdAp7RpQSBbwHV9lChoBmgJaA9DCKsgBrr2Beq/lIaUUpRoFUsyaBZHQKe0Gvf0mMR1fZQoaAZoCWgPQwidf7vs153cv5SGlFKUaBVLMmgWR0Cns8yw4bS7dX2UKGgGaAloD0MI2qhOB7Ie5b+UhpRSlGgVSzJoFkdAp7N9bcGke3V9lChoBmgJaA9DCJKx2vy/6uG/lIaUUpRoFUsyaBZHQKe2Zm9QGfR1fZQoaAZoCWgPQwg4gem0boPYv5SGlFKUaBVLMmgWR0Cnthd6kZaWdX2UKGgGaAloD0MIZyyazk4G2L+UhpRSlGgVSzJoFkdAp7XI3FUADXV9lChoBmgJaA9DCPg2/dmPFN2/lIaUUpRoFUsyaBZHQKe1eMrmQsB1fZQoaAZoCWgPQwh9XvHUIw3cv5SGlFKUaBVLMmgWR0CnuDuxSpBHdX2UKGgGaAloD0MIfuGVJM/117+UhpRSlGgVSzJoFkdAp7frxmTTv3V9lChoBmgJaA9DCLg7a7dd6OG/lIaUUpRoFUsyaBZHQKe3nDNQj2V1fZQoaAZoCWgPQwiQvHMoQ1Xav5SGlFKUaBVLMmgWR0Cnt0tG/etTdX2UKGgGaAloD0MIyH2rdeJy3L+UhpRSlGgVSzJoFkdAp7lV+Zw4sHV9lChoBmgJaA9DCGcpWU5C6d6/lIaUUpRoFUsyaBZHQKe5Bh1DBuZ1fZQoaAZoCWgPQwiPboRFRZzOv5SGlFKUaBVLMmgWR0CnuLaN+9amdX2UKGgGaAloD0MIUOCdfHps07+UhpRSlGgVSzJoFkdAp7hloDgZTHV9lChoBmgJaA9DCMr6zcR0Iea/lIaUUpRoFUsyaBZHQKe6aE384xV1fZQoaAZoCWgPQwgaijve5Lfcv5SGlFKUaBVLMmgWR0Cnuhhdt2s8dX2UKGgGaAloD0MIF5zB3y9m67+UhpRSlGgVSzJoFkdAp7nI1P3ztnV9lChoBmgJaA9DCK6ek943PuC/lIaUUpRoFUsyaBZHQKe5d+az/qB1fZQoaAZoCWgPQwiXxcTm41rtv5SGlFKUaBVLMmgWR0Cnu37KifxudX2UKGgGaAloD0MIxF4oYDuY5b+UhpRSlGgVSzJoFkdAp7sux+rlvXV9lChoBmgJaA9DCJxOstXlFOK/lIaUUpRoFUsyaBZHQKe63yVfNRp1fZQoaAZoCWgPQwiWlpF6T+Xbv5SGlFKUaBVLMmgWR0Cnuo4ku6ErdX2UKGgGaAloD0MIe7yQDg9h5L+UhpRSlGgVSzJoFkdAp7yO63AmA3V9lChoBmgJaA9DCGDI6lbPSeC/lIaUUpRoFUsyaBZHQKe8PwJgLJF1fZQoaAZoCWgPQwh0JQLVP4jSv5SGlFKUaBVLMmgWR0Cnu+9jXnQqdX2UKGgGaAloD0MIzVZe8j/54r+UhpRSlGgVSzJoFkdAp7uebPQfIXV9lChoBmgJaA9DCK685H/yd+m/lIaUUpRoFUsyaBZHQKe9yIeHSF51fZQoaAZoCWgPQwg+zF62nbbkv5SGlFKUaBVLMmgWR0CnvXiZF5OadX2UKGgGaAloD0MIoWZIFcUr8L+UhpRSlGgVSzJoFkdAp70o+t8uz3V9lChoBmgJaA9DCMJsAgzLH+W/lIaUUpRoFUsyaBZHQKe82BoVVPx1fZQoaAZoCWgPQwj5ugz/6Qblv5SGlFKUaBVLMmgWR0CnvuCh37k5dX2UKGgGaAloD0MI8wGBzqTN5L+UhpRSlGgVSzJoFkdAp76Q1JlJ6XV9lChoBmgJaA9DCEg3wqIiTt+/lIaUUpRoFUsyaBZHQKe+QUzsQd11fZQoaAZoCWgPQwgNxLKZQ9Lmv5SGlFKUaBVLMmgWR0CnvfA5aNdadX2UKGgGaAloD0MIokYhyaze5L+UhpRSlGgVSzJoFkdAp7/p6Ww/xHV9lChoBmgJaA9DCEPJ5NTOMOG/lIaUUpRoFUsyaBZHQKe/mjlgc951fZQoaAZoCWgPQwgkYd9OIsLgv5SGlFKUaBVLMmgWR0Cnv0rHdXT3dX2UKGgGaAloD0MI3ze+9syS2L+UhpRSlGgVSzJoFkdAp776CUX533V9lChoBmgJaA9DCErOiT20j9q/lIaUUpRoFUsyaBZHQKfBBIT4+KV1fZQoaAZoCWgPQwikUBa+vtbbv5SGlFKUaBVLMmgWR0CnwLSeiBXkdX2UKGgGaAloD0MI7SsP0lPk4b+UhpRSlGgVSzJoFkdAp8BlEXtSh3V9lChoBmgJaA9DCF4sDJHT19i/lIaUUpRoFUsyaBZHQKfAFBSDRMN1fZQoaAZoCWgPQwhYcaq1MAvqv5SGlFKUaBVLMmgWR0Cnwhyz5XU6dX2UKGgGaAloD0MI7MGk+PiE7L+UhpRSlGgVSzJoFkdAp8HMulGgBnV9lChoBmgJaA9DCCWuY1xxcda/lIaUUpRoFUsyaBZHQKfBfRrrPdF1fZQoaAZoCWgPQwiJ7IMsCybRv5SGlFKUaBVLMmgWR0CnwSwRwqAjdX2UKGgGaAloD0MIv/IgPUWO47+UhpRSlGgVSzJoFkdAp8M0V58jRnV9lChoBmgJaA9DCIPb2sLzUs2/lIaUUpRoFUsyaBZHQKfC5GvOhTR1fZQoaAZoCWgPQwguGjIepRLdv5SGlFKUaBVLMmgWR0CnwpS6tknUdX2UKGgGaAloD0MIEY3uIHam4L+UhpRSlGgVSzJoFkdAp8JDzXjEN3V9lChoBmgJaA9DCAexM4XO6+K/lIaUUpRoFUsyaBZHQKfEUSAYpDx1fZQoaAZoCWgPQwixiGGHMenLv5SGlFKUaBVLMmgWR0CnxAE0BOpLdX2UKGgGaAloD0MIOGVuvhHd0r+UhpRSlGgVSzJoFkdAp8Oxle4TbnV9lChoBmgJaA9DCOWdQxmqYvG/lIaUUpRoFUsyaBZHQKfDYJzkp7V1fZQoaAZoCWgPQwg58Gq5M5Pkv5SGlFKUaBVLMmgWR0CnxYbXQMQVdX2UKGgGaAloD0MIvqPGhJhL1r+UhpRSlGgVSzJoFkdAp8U247Rv33V9lChoBmgJaA9DCARyiSMPRMy/lIaUUpRoFUsyaBZHQKfE51V5rxl1fZQoaAZoCWgPQwgJiEm4kMfqv5SGlFKUaBVLMmgWR0CnxJcZccENdX2UKGgGaAloD0MI4ng+A+rN2L+UhpRSlGgVSzJoFkdAp8ai0dBBzHV9lChoBmgJaA9DCNVBXg8mxea/lIaUUpRoFUsyaBZHQKfGUv/R3Nd1fZQoaAZoCWgPQwgD7Q4pBsjgv5SGlFKUaBVLMmgWR0CnxgNc4YJmdX2UKGgGaAloD0MIjPM3oRCB7b+UhpRSlGgVSzJoFkdAp8WyUeMho3V9lChoBmgJaA9DCLx6FRkdkNe/lIaUUpRoFUsyaBZHQKfHzOmixml1fZQoaAZoCWgPQwi+bDttjQjQv5SGlFKUaBVLMmgWR0Cnx30wztTldX2UKGgGaAloD0MItI8V/DbE3r+UhpRSlGgVSzJoFkdAp8ctvS+g13V9lChoBmgJaA9DCGBzDp4JTdG/lIaUUpRoFUsyaBZHQKfG3VhCtzV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (285 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.39649976970395073, "std_reward": 0.1375510893168029, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-02T03:00:33.149166"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6747d2bb8feead14e6597560bec3cc8466b34a30f94dce02e40a5b802b0420af
|
3 |
+
size 2387
|