# flux-lora-littletinies This is a LoRA derived from [FLUX.1-dev/](https://huggingface.co//workspace/SimpleTuner/FLUX.1-dev/). The main validation prompt used during training was: ``` ethnographic photography of teddy bear at a picnic ``` ## Validation settings - CFG: `7.5` - CFG Rescale: `0.7` - Steps: `50` - Sampler: `None` - Seed: `42` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 23 - Training steps: 1800 - Learning rate: 0.0001 - Effective batch size: 16 - Micro-batch size: 8 - Gradient accumulation steps: 2 - Number of GPUs: 1 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Enabled - LoRA Rank: 64 - LoRA Alpha: 16 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### little-tinies - Repeats: 18 - Total number of images: 64 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = '/pzc163/flux-lora-littletinies' adapter_id = 'flux-lora-littletinies' pipeline = DiffusionPipeline.from_pretrained(model_id)\pipeline.load_adapter(adapter_id) prompt = "ethnographic photography of teddy bear at a picnic" negative_prompt = "blurry, cropped, ugly" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=50, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=7.5, guidance_rescale=0.7, ).images[0] image.save("output.png", format="PNG") ``` inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./image0.png - text: 'ethnographic photography of teddy bear at a picnic' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./image1.png - text: 'a robot walking on the street,surrounded by a group of girls' parameters: negative_prompt: 'blurry, cropped, ugly'