File size: 15,505 Bytes
659641f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright (c) Alibaba.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
from typing import Union

from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING


class LlamaConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LLaMA-7B.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LlamaModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
            Llama 2 up to 4096, CodeLlama up to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        pretraining_tp (`int`, *optional*, defaults to 1):
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
            document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
            necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
            issue](https://github.com/pytorch/pytorch/issues/76232).
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.


    ```python
    >>> from transformers import LlamaModel, LlamaConfig

    >>> # Initializing a LLaMA llama-7b style configuration
    >>> configuration = LlamaConfig()

    >>> # Initializing a model from the llama-7b style configuration
    >>> model = LlamaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "llama"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
            raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")

            
class MplugOwlVisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate
    a
     mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
     configuration defaults will yield a similar configuration to that of the mPLUG-Owl
     [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.

     Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
     documentation from [`PretrainedConfig`] for more information.

     Args:
         hidden_size (`int`, *optional*, defaults to 768):
             Dimensionality of the encoder layers and the pooler layer.
         intermediate_size (`int`, *optional*, defaults to 3072):
             Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
         num_hidden_layers (`int`, *optional*, defaults to 12):
             Number of hidden layers in the Transformer encoder.
         num_attention_heads (`int`, *optional*, defaults to 12):
             Number of attention heads for each attention layer in the Transformer encoder.
         image_size (`int`, *optional*, defaults to 224):
             The size (resolution) of each image.
         patch_size (`int`, *optional*, defaults to 32):
             The size (resolution) of each patch.
         hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
             The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
             `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
         layer_norm_eps (`float`, *optional*, defaults to 1e-5):
             The epsilon used by the layer normalization layers.
         attention_dropout (`float`, *optional*, defaults to 0.0):
             The dropout ratio for the attention probabilities.
         initializer_range (`float`, *optional*, defaults to 0.02):
             The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         initializer_factor (`float`, *optional*, defaults to 1):
             A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
             testing).


     ```"""

    model_type = "mplug_owl_vision_model"

    def __init__(
        self,
        hidden_size=1024,
        intermediate_size=4096,
        projection_dim=768,
        num_hidden_layers=24,
        num_attention_heads=16,
        num_channels=3,
        image_size=448,
        patch_size=14,
        hidden_act="quick_gelu",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        use_flash_attn=False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.projection_dim = projection_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.initializer_range = initializer_range
        self.initializer_factor = initializer_factor
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.use_flash_attn = use_flash_attn

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the vision config dict if we are loading from MplugOwlConfig
        if config_dict.get("model_type") == "mplug-owl":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class MplugOwlVisualAbstractorConfig(PretrainedConfig):
    model_type = "mplug_owl_visual_abstract"

    def __init__(
        self,
        num_learnable_queries=64,
        hidden_size=1024,
        num_hidden_layers=6,
        num_attention_heads=16,
        intermediate_size=2816,
        attention_probs_dropout_prob=0.,
        initializer_range=0.02,
        layer_norm_eps=1e-6,
        encoder_hidden_size=1024,
        grid_size=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.hidden_size = hidden_size
        self.num_learnable_queries = num_learnable_queries
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.encoder_hidden_size = encoder_hidden_size
        self.grid_size = grid_size if grid_size else 32

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the visual_abstractor config dict if we are loading from MplugOwlConfig
        if config_dict.get("model_type") == "mplug-owl":
            config_dict = config_dict["abstractor_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)



DEFAULT_VISUAL_CONFIG = {
    "visual_model": MplugOwlVisionConfig().to_dict(),
    "visual_abstractor": MplugOwlVisualAbstractorConfig().to_dict()
}

class MPLUGOwl2Config(LlamaConfig):
    model_type = "mplug_owl2"
    def __init__(self, visual_config=None, **kwargs):
        if visual_config is None:
            self.visual_config = DEFAULT_VISUAL_CONFIG
        else:
            self.visual_config = visual_config
        
        super().__init__(
            **kwargs,
        )
        
if __name__ == "__main__":
    print(MplugOwlVisionConfig().to_dict())