teowu commited on
Commit
4638546
1 Parent(s): 474d82c

Upload modeling_mplug_owl2.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_mplug_owl2.py +331 -0
modeling_mplug_owl2.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu & Qinghao Ye (Modified from LLaVA)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from abc import ABC, abstractmethod
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ from torch.nn import CrossEntropyLoss
21
+
22
+ from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM
23
+ from transformers.modeling_outputs import CausalLMOutputWithPast
24
+
25
+ from .configuration_mplug_owl2 import MPLUGOwl2Config, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig
26
+ from .visual_encoder import MplugOwlVisionModel, MplugOwlVisualAbstractorModel
27
+ from .modeling_llama2 import replace_llama_modality_adaptive
28
+ IGNORE_INDEX = -100
29
+ IMAGE_TOKEN_INDEX = -200
30
+ DEFAULT_IMAGE_TOKEN = "<|image|>"
31
+ from icecream import ic
32
+
33
+ class MPLUGOwl2MetaModel:
34
+ def __init__(self, config):
35
+ super(MPLUGOwl2MetaModel, self).__init__(config)
36
+ self.vision_model = MplugOwlVisionModel(
37
+ MplugOwlVisionConfig(**config.visual_config["visual_model"])
38
+ )
39
+ self.visual_abstractor = MplugOwlVisualAbstractorModel(
40
+ MplugOwlVisualAbstractorConfig(**config.visual_config["visual_abstractor"]), config.hidden_size
41
+ )
42
+
43
+ def get_vision_tower(self):
44
+ vision_model = getattr(self, 'vision_model', None)
45
+ if type(vision_model) is list:
46
+ vision_model = vision_model[0]
47
+ return vision_model
48
+
49
+ def get_visual_abstractor(self):
50
+ visual_abstractor = getattr(self, 'visual_abstractor', None)
51
+ if type(visual_abstractor) is list:
52
+ visual_abstractor = visual_abstractor[0]
53
+ return visual_abstractor
54
+
55
+
56
+ class MPLUGOwl2MetaForCausalLM(ABC):
57
+ @abstractmethod
58
+ def get_model(self):
59
+ pass
60
+
61
+ def encode_images(self, images):
62
+ image_features = self.get_model().vision_model(images).last_hidden_state
63
+ image_features = self.get_model().visual_abstractor(encoder_hidden_states=image_features).last_hidden_state
64
+ return image_features
65
+
66
+ def prepare_inputs_labels_for_multimodal(
67
+ self, input_ids, attention_mask, past_key_values, labels, images
68
+ ):
69
+ if images is None or input_ids.shape[1] == 1:
70
+ if past_key_values is not None and images is not None and input_ids.shape[1] == 1:
71
+ attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
72
+ multiway_indices = torch.zeros_like(input_ids).long().to(self.device)
73
+ return input_ids, multiway_indices, attention_mask, past_key_values, None, labels
74
+
75
+ if type(images) is list or images.ndim == 5:
76
+ concat_images = torch.cat([image for image in images], dim=0)
77
+ image_features = self.encode_images(concat_images)
78
+ split_sizes = [image.shape[0] for image in images]
79
+ image_features = torch.split(image_features, split_sizes, dim=0)
80
+ image_features = [x.flatten(0, 1) for x in image_features]
81
+ else:
82
+ image_features = self.encode_images(images)
83
+
84
+ new_input_embeds = []
85
+ new_modality_indicators = []
86
+ new_labels = [] if labels is not None else None
87
+ cur_image_idx = 0
88
+ for batch_idx, cur_input_ids in enumerate(input_ids):
89
+ if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
90
+ # multimodal LLM, but the current sample is not multimodal
91
+ # FIXME: this is a hacky fix, for deepspeed zero3 to work
92
+ half_len = cur_input_ids.shape[0] // 2
93
+ cur_image_features = image_features[cur_image_idx]
94
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
95
+ cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
96
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
97
+ new_input_embeds.append(cur_input_embeds)
98
+
99
+ cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device)
100
+ new_modality_indicators.append(cur_modality_indicators)
101
+ if labels is not None:
102
+ new_labels.append(labels[batch_idx])
103
+ cur_image_idx += 1
104
+ continue
105
+ image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
106
+ cur_new_input_embeds = []
107
+ cur_modality_indicators = []
108
+ if labels is not None:
109
+ cur_labels = labels[batch_idx]
110
+ cur_new_labels = []
111
+ assert cur_labels.shape == cur_input_ids.shape
112
+ while image_token_indices.numel() > 0:
113
+ cur_image_features = image_features[cur_image_idx]
114
+ image_token_start = image_token_indices[0]
115
+ cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
116
+ cur_new_input_embeds.append(cur_image_features)
117
+
118
+ # Add modality indicator
119
+ assert image_token_start == len(cur_input_ids[:image_token_start])
120
+ cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long())
121
+ cur_modality_indicators.append(torch.ones(len(cur_image_features)).long())
122
+
123
+ if labels is not None:
124
+ cur_new_labels.append(cur_labels[:image_token_start])
125
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
126
+ cur_labels = cur_labels[image_token_start+1:]
127
+ cur_image_idx += 1
128
+ cur_input_ids = cur_input_ids[image_token_start+1:]
129
+ image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
130
+ if cur_input_ids.numel() > 0:
131
+ cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
132
+ cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long())
133
+ if labels is not None:
134
+ cur_new_labels.append(cur_labels)
135
+ cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
136
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
137
+ new_input_embeds.append(cur_new_input_embeds)
138
+
139
+ # Modality
140
+ cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators]
141
+ cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0)
142
+ new_modality_indicators.append(cur_modality_indicators)
143
+
144
+
145
+ if labels is not None:
146
+ cur_new_labels = torch.cat(cur_new_labels, dim=0)
147
+ new_labels.append(cur_new_labels)
148
+
149
+ if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
150
+ max_len = max(x.shape[0] for x in new_input_embeds)
151
+
152
+ # Embedding
153
+ new_input_embeds_align = []
154
+ for cur_new_embed in new_input_embeds:
155
+ cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
156
+ new_input_embeds_align.append(cur_new_embed)
157
+ new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
158
+
159
+ # Modality
160
+ new_modality_indicators_align = []
161
+ for cur_modality_indicator in new_modality_indicators:
162
+ cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0)
163
+ new_modality_indicators_align.append(cur_new_embed)
164
+ new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0)
165
+
166
+ # Label
167
+ if labels is not None:
168
+ new_labels_align = []
169
+ _new_labels = new_labels
170
+ for cur_new_label in new_labels:
171
+ cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
172
+ new_labels_align.append(cur_new_label)
173
+ new_labels = torch.stack(new_labels_align, dim=0)
174
+
175
+ # Attention Mask
176
+ if attention_mask is not None:
177
+ new_attention_mask = []
178
+ for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
179
+ new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
180
+ new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
181
+ cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
182
+ new_attention_mask.append(cur_new_attention_mask)
183
+ attention_mask = torch.stack(new_attention_mask, dim=0)
184
+ assert attention_mask.shape == new_labels.shape
185
+ else:
186
+ new_input_embeds = torch.stack(new_input_embeds, dim=0)
187
+ new_modality_indicators = torch.stack(new_modality_indicators, dim=0)
188
+ if labels is not None:
189
+ new_labels = torch.stack(new_labels, dim=0)
190
+
191
+ if attention_mask is not None:
192
+ new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
193
+ attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
194
+ assert attention_mask.shape == new_input_embeds.shape[:2]
195
+ return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels
196
+
197
+
198
+
199
+ class MPLUGOwl2LlamaModel(MPLUGOwl2MetaModel, LlamaModel):
200
+ config_class = MPLUGOwl2Config
201
+
202
+ def __init__(self, config: MPLUGOwl2Config):
203
+ super(MPLUGOwl2LlamaModel, self).__init__(config)
204
+
205
+
206
+ class MPLUGOwl2LlamaForCausalLM(LlamaForCausalLM, MPLUGOwl2MetaForCausalLM):
207
+ config_class = MPLUGOwl2Config
208
+
209
+ def __init__(self, config):
210
+ super(LlamaForCausalLM, self).__init__(config)
211
+ self.model = MPLUGOwl2LlamaModel(config)
212
+
213
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
214
+
215
+ # Initialize weights and apply final processing
216
+ self.post_init()
217
+
218
+ def get_model(self):
219
+ return self.model
220
+
221
+ def forward(
222
+ self,
223
+ input_ids: torch.LongTensor = None,
224
+ # modality_indicators: torch.LongTensor = None,
225
+ attention_mask: Optional[torch.Tensor] = None,
226
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
227
+ inputs_embeds: Optional[torch.FloatTensor] = None,
228
+ labels: Optional[torch.LongTensor] = None,
229
+ use_cache: Optional[bool] = None,
230
+ output_attentions: Optional[bool] = None,
231
+ output_hidden_states: Optional[bool] = None,
232
+ images: Optional[torch.FloatTensor] = None,
233
+ return_dict: Optional[bool] = None,
234
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
235
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
236
+ output_hidden_states = (
237
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
238
+ )
239
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
240
+ input_ids, modality_indicators, attention_mask, past_key_values, inputs_embeds, labels = \
241
+ self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
242
+
243
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
244
+ outputs = self.model(
245
+ input_ids=input_ids,
246
+ modality_indicators=modality_indicators,
247
+ attention_mask=attention_mask,
248
+ past_key_values=past_key_values,
249
+ inputs_embeds=inputs_embeds,
250
+ use_cache=use_cache,
251
+ output_attentions=output_attentions,
252
+ output_hidden_states=output_hidden_states,
253
+ return_dict=return_dict
254
+ )
255
+
256
+ hidden_states = outputs[0]
257
+ logits = self.lm_head(hidden_states)
258
+
259
+ loss = None
260
+ if labels is not None:
261
+ # Shift so that tokens < n predict n
262
+ shift_logits = logits[..., :-1, :].contiguous()
263
+ shift_labels = labels[..., 1:].contiguous()
264
+ # Flatten the tokens
265
+ loss_fct = CrossEntropyLoss()
266
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
267
+ shift_labels = shift_labels.view(-1)
268
+ # Enable model/pipeline parallelism
269
+ shift_labels = shift_labels.to(shift_logits.device)
270
+ loss = loss_fct(shift_logits, shift_labels)
271
+
272
+ if not return_dict:
273
+ output = (logits,) + outputs[1:]
274
+ return (loss,) + output if loss is not None else output
275
+
276
+ return CausalLMOutputWithPast(
277
+ loss=loss,
278
+ logits=logits,
279
+ past_key_values=outputs.past_key_values,
280
+ hidden_states=outputs.hidden_states,
281
+ attentions=outputs.attentions,
282
+ )
283
+
284
+ def prepare_inputs_for_generation(
285
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
286
+ ):
287
+ if past_key_values:
288
+ input_ids = input_ids[:, -1:]
289
+
290
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
291
+ if inputs_embeds is not None and past_key_values is None:
292
+ model_inputs = {"inputs_embeds": inputs_embeds}
293
+ else:
294
+ model_inputs = {"input_ids": input_ids}
295
+
296
+ model_inputs.update(
297
+ {
298
+ "past_key_values": past_key_values,
299
+ "use_cache": kwargs.get("use_cache"),
300
+ "attention_mask": attention_mask,
301
+ "images": kwargs.get("images", None),
302
+ }
303
+ )
304
+ return model_inputs
305
+
306
+ AutoConfig.register("mplug_owl2", MPLUGOwl2Config)
307
+ AutoModelForCausalLM.register(MPLUGOwl2Config, MPLUGOwl2LlamaForCausalLM)
308
+
309
+ replace_llama_modality_adaptive()
310
+
311
+ if __name__ == "__main__":
312
+ config = MPLUGOwl2Config.from_pretrained('q-future/one-align')
313
+ from icecream import ic
314
+ # config = MPLUGOwl2Config()
315
+ model = AutoModelForCausalLM(config)
316
+
317
+ images = torch.randn(2, 3, 448, 448)
318
+ input_ids = torch.cat([
319
+ torch.ones(8).long(), torch.tensor([-1]*1).long(), torch.ones(8).long(), torch.tensor([-1]*1).long(), torch.ones(8).long()
320
+ ], dim=0).unsqueeze(0)
321
+ labels = input_ids.clone()
322
+ labels[labels < 0] = -100
323
+
324
+ # image_feature = model.encode_images(images)
325
+ # ic(image_feature.shape)
326
+
327
+ output = model(images=images, input_ids=input_ids, labels=labels)
328
+ ic(output.loss)
329
+ ic(output.logits.shape)
330
+
331
+ model.save_pretrained('/cpfs01/shared/public/test/tmp_owl')