Upload modeling_llama2.py with huggingface_hub
Browse files- modeling_llama2.py +334 -6
modeling_llama2.py
CHANGED
@@ -18,6 +18,7 @@ sys.path.insert(0, dir_path)
|
|
18 |
|
19 |
import transformers
|
20 |
from transformers.models.llama.modeling_llama import *
|
|
|
21 |
from transformers.configuration_utils import PretrainedConfig
|
22 |
from transformers.utils import logging
|
23 |
|
@@ -54,9 +55,18 @@ class MultiwayNetwork(nn.Module):
|
|
54 |
class LlamaAttention(nn.Module):
|
55 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
56 |
|
57 |
-
def __init__(self, config: LlamaConfig):
|
58 |
super().__init__()
|
59 |
self.config = config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
self.hidden_size = config.hidden_size
|
61 |
self.num_heads = config.num_attention_heads
|
62 |
self.head_dim = self.hidden_size // self.num_heads
|
@@ -64,6 +74,7 @@ class LlamaAttention(nn.Module):
|
|
64 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
65 |
self.max_position_embeddings = config.max_position_embeddings
|
66 |
self.rope_theta = config.rope_theta
|
|
|
67 |
|
68 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
69 |
raise ValueError(
|
@@ -182,14 +193,314 @@ class LlamaAttention(nn.Module):
|
|
182 |
attn_weights = None
|
183 |
|
184 |
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
class LlamaDecoderLayer(nn.Module):
|
189 |
-
def __init__(self, config: LlamaConfig):
|
190 |
super().__init__()
|
191 |
self.hidden_size = config.hidden_size
|
192 |
self.self_attn = LlamaAttention(config=config)
|
|
|
193 |
self.mlp = LlamaMLP(config)
|
194 |
self.input_layernorm = MultiwayNetwork(module_provider=partial(
|
195 |
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
@@ -285,7 +596,7 @@ def model_forward(
|
|
285 |
batch_size, seq_length, _ = inputs_embeds.shape
|
286 |
else:
|
287 |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
288 |
-
|
289 |
seq_length_with_past = seq_length
|
290 |
past_key_values_length = 0
|
291 |
|
@@ -309,9 +620,24 @@ def model_forward(
|
|
309 |
attention_mask = torch.ones(
|
310 |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
311 |
)
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
hidden_states = inputs_embeds
|
317 |
|
@@ -482,6 +808,8 @@ def causal_model_forward(
|
|
482 |
def replace_llama_modality_adaptive():
|
483 |
transformers.models.llama.configuration_llama.LlamaConfig = LlamaConfig
|
484 |
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
|
|
|
|
485 |
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
|
486 |
transformers.models.llama.modeling_llama.LlamaModel.forward = model_forward
|
487 |
transformers.models.llama.modeling_llama.LlamaForCausalLM.forward = causal_model_forward
|
|
|
18 |
|
19 |
import transformers
|
20 |
from transformers.models.llama.modeling_llama import *
|
21 |
+
from transformers.models.llama.modeling_llama import *
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
from transformers.utils import logging
|
24 |
|
|
|
55 |
class LlamaAttention(nn.Module):
|
56 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
57 |
|
58 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
59 |
super().__init__()
|
60 |
self.config = config
|
61 |
+
self.layer_idx = layer_idx
|
62 |
+
if layer_idx is None:
|
63 |
+
logger.warning_once(
|
64 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
65 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
66 |
+
"when creating this class."
|
67 |
+
)
|
68 |
+
|
69 |
+
self.attention_dropout = config.attention_dropout
|
70 |
self.hidden_size = config.hidden_size
|
71 |
self.num_heads = config.num_attention_heads
|
72 |
self.head_dim = self.hidden_size // self.num_heads
|
|
|
74 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
75 |
self.max_position_embeddings = config.max_position_embeddings
|
76 |
self.rope_theta = config.rope_theta
|
77 |
+
self.is_causal = True
|
78 |
|
79 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
80 |
raise ValueError(
|
|
|
193 |
attn_weights = None
|
194 |
|
195 |
return attn_output, attn_weights, past_key_value
|
196 |
+
|
197 |
+
|
198 |
+
class LlamaFlashAttention2(LlamaAttention):
|
199 |
+
"""
|
200 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
201 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
202 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
203 |
+
"""
|
204 |
+
|
205 |
+
def __init__(self, *args, **kwargs):
|
206 |
+
super().__init__(*args, **kwargs)
|
207 |
+
|
208 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
209 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
210 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
211 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
212 |
+
|
213 |
+
def forward(
|
214 |
+
self,
|
215 |
+
hidden_states: torch.Tensor,
|
216 |
+
modality_indicators: torch.Tensor,
|
217 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
218 |
+
position_ids: Optional[torch.LongTensor] = None,
|
219 |
+
past_key_value: Optional[Cache] = None,
|
220 |
+
output_attentions: bool = False,
|
221 |
+
use_cache: bool = False,
|
222 |
+
**kwargs,
|
223 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
224 |
+
# LlamaFlashAttention2 attention does not support output_attentions
|
225 |
+
if "padding_mask" in kwargs:
|
226 |
+
warnings.warn(
|
227 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
228 |
+
)
|
229 |
+
|
230 |
+
# overwrite attention_mask with padding_mask
|
231 |
+
attention_mask = kwargs.pop("padding_mask")
|
232 |
+
|
233 |
+
output_attentions = False
|
234 |
+
|
235 |
+
bsz, q_len, _ = hidden_states.size()
|
236 |
+
|
237 |
+
query_states = self.q_proj(hidden_states)
|
238 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
239 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
240 |
+
|
241 |
+
# Flash attention requires the input to have the shape
|
242 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
243 |
+
# therefore we just need to keep the original shape
|
244 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
245 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
246 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
247 |
+
|
248 |
+
kv_seq_len = key_states.shape[-2]
|
249 |
+
if past_key_value is not None:
|
250 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
251 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
252 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
253 |
+
|
254 |
+
if past_key_value is not None:
|
255 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
256 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
257 |
+
|
258 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
259 |
+
# to be able to avoid many of these transpose/reshape/view.
|
260 |
+
query_states = query_states.transpose(1, 2)
|
261 |
+
key_states = key_states.transpose(1, 2)
|
262 |
+
value_states = value_states.transpose(1, 2)
|
263 |
+
|
264 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
265 |
+
|
266 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
267 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
268 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
269 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
270 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
271 |
+
|
272 |
+
input_dtype = query_states.dtype
|
273 |
+
if input_dtype == torch.float32:
|
274 |
+
if torch.is_autocast_enabled():
|
275 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
276 |
+
# Handle the case where the model is quantized
|
277 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
278 |
+
target_dtype = self.config._pre_quantization_dtype
|
279 |
+
else:
|
280 |
+
target_dtype = self.q_proj.weight.dtype
|
281 |
+
|
282 |
+
logger.warning_once(
|
283 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
284 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
285 |
+
f" {target_dtype}."
|
286 |
+
)
|
287 |
+
|
288 |
+
query_states = query_states.to(target_dtype)
|
289 |
+
key_states = key_states.to(target_dtype)
|
290 |
+
value_states = value_states.to(target_dtype)
|
291 |
+
|
292 |
+
attn_output = self._flash_attention_forward(
|
293 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
294 |
+
)
|
295 |
+
|
296 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
297 |
+
attn_output = self.o_proj(attn_output)
|
298 |
+
|
299 |
+
if not output_attentions:
|
300 |
+
attn_weights = None
|
301 |
+
|
302 |
+
return attn_output, attn_weights, past_key_value
|
303 |
+
|
304 |
+
def _flash_attention_forward(
|
305 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
306 |
+
):
|
307 |
+
"""
|
308 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
309 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
query_states (`torch.Tensor`):
|
313 |
+
Input query states to be passed to Flash Attention API
|
314 |
+
key_states (`torch.Tensor`):
|
315 |
+
Input key states to be passed to Flash Attention API
|
316 |
+
value_states (`torch.Tensor`):
|
317 |
+
Input value states to be passed to Flash Attention API
|
318 |
+
attention_mask (`torch.Tensor`):
|
319 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
320 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
321 |
+
dropout (`int`, *optional*):
|
322 |
+
Attention dropout
|
323 |
+
softmax_scale (`float`, *optional*):
|
324 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
325 |
+
"""
|
326 |
+
if not self._flash_attn_uses_top_left_mask:
|
327 |
+
causal = self.is_causal
|
328 |
+
else:
|
329 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
330 |
+
causal = self.is_causal and query_length != 1
|
331 |
+
|
332 |
+
# Contains at least one padding token in the sequence
|
333 |
+
if attention_mask is not None:
|
334 |
+
batch_size = query_states.shape[0]
|
335 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
336 |
+
query_states, key_states, value_states, attention_mask, query_length
|
337 |
+
)
|
338 |
+
|
339 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
340 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
341 |
+
|
342 |
+
attn_output_unpad = flash_attn_varlen_func(
|
343 |
+
query_states,
|
344 |
+
key_states,
|
345 |
+
value_states,
|
346 |
+
cu_seqlens_q=cu_seqlens_q,
|
347 |
+
cu_seqlens_k=cu_seqlens_k,
|
348 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
349 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
350 |
+
dropout_p=dropout,
|
351 |
+
softmax_scale=softmax_scale,
|
352 |
+
causal=causal,
|
353 |
+
)
|
354 |
+
|
355 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
356 |
+
else:
|
357 |
+
attn_output = flash_attn_func(
|
358 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
359 |
+
)
|
360 |
+
|
361 |
+
return attn_output
|
362 |
+
|
363 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
364 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
365 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
366 |
+
|
367 |
+
key_layer = index_first_axis(
|
368 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
369 |
+
)
|
370 |
+
value_layer = index_first_axis(
|
371 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
372 |
+
)
|
373 |
+
if query_length == kv_seq_len:
|
374 |
+
query_layer = index_first_axis(
|
375 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
376 |
+
)
|
377 |
+
cu_seqlens_q = cu_seqlens_k
|
378 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
379 |
+
indices_q = indices_k
|
380 |
+
elif query_length == 1:
|
381 |
+
max_seqlen_in_batch_q = 1
|
382 |
+
cu_seqlens_q = torch.arange(
|
383 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
384 |
+
) # There is a memcpy here, that is very bad.
|
385 |
+
indices_q = cu_seqlens_q[:-1]
|
386 |
+
query_layer = query_layer.squeeze(1)
|
387 |
+
else:
|
388 |
+
# The -q_len: slice assumes left padding.
|
389 |
+
attention_mask = attention_mask[:, -query_length:]
|
390 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
391 |
+
|
392 |
+
return (
|
393 |
+
query_layer,
|
394 |
+
key_layer,
|
395 |
+
value_layer,
|
396 |
+
indices_q,
|
397 |
+
(cu_seqlens_q, cu_seqlens_k),
|
398 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
399 |
+
)
|
400 |
+
|
401 |
+
|
402 |
+
class LlamaSdpaAttention(LlamaAttention):
|
403 |
+
"""
|
404 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
405 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
406 |
+
SDPA API.
|
407 |
+
"""
|
408 |
+
|
409 |
+
# Adapted from LlamaAttention.forward
|
410 |
+
def forward(
|
411 |
+
self,
|
412 |
+
hidden_states: torch.Tensor,
|
413 |
+
modality_indicators: torch.Tensor,
|
414 |
+
attention_mask: Optional[torch.Tensor] = None,
|
415 |
+
position_ids: Optional[torch.LongTensor] = None,
|
416 |
+
past_key_value: Optional[Cache] = None,
|
417 |
+
output_attentions: bool = False,
|
418 |
+
use_cache: bool = False,
|
419 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
420 |
+
if output_attentions:
|
421 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
422 |
+
logger.warning_once(
|
423 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
424 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
425 |
+
)
|
426 |
+
return super().forward(
|
427 |
+
hidden_states=hidden_states,
|
428 |
+
modality_indicators=modality_indicators,
|
429 |
+
attention_mask=attention_mask,
|
430 |
+
position_ids=position_ids,
|
431 |
+
past_key_value=past_key_value,
|
432 |
+
output_attentions=output_attentions,
|
433 |
+
use_cache=use_cache,
|
434 |
+
)
|
435 |
+
|
436 |
+
bsz, q_len, _ = hidden_states.size()
|
437 |
+
|
438 |
+
query_states = self.q_proj(hidden_states)
|
439 |
+
key_states = self.k_proj(hidden_states, modality_indicators)
|
440 |
+
value_states = self.v_proj(hidden_states, modality_indicators)
|
441 |
+
|
442 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
443 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
444 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
445 |
+
|
446 |
+
kv_seq_len = key_states.shape[-2]
|
447 |
+
if past_key_value is not None:
|
448 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
449 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
450 |
+
|
451 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
452 |
+
|
453 |
+
if past_key_value is not None:
|
454 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
455 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
456 |
+
|
457 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
458 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
459 |
+
|
460 |
+
if attention_mask is not None:
|
461 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
462 |
+
raise ValueError(
|
463 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
464 |
+
)
|
465 |
+
|
466 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
467 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
468 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
469 |
+
query_states = query_states.contiguous()
|
470 |
+
key_states = key_states.contiguous()
|
471 |
+
value_states = value_states.contiguous()
|
472 |
+
|
473 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
474 |
+
query_states,
|
475 |
+
key_states,
|
476 |
+
value_states,
|
477 |
+
attn_mask=attention_mask,
|
478 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
479 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
480 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
481 |
+
)
|
482 |
+
|
483 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
484 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
485 |
+
|
486 |
+
attn_output = self.o_proj(attn_output)
|
487 |
+
|
488 |
+
return attn_output, None, past_key_value
|
489 |
+
|
490 |
|
491 |
|
492 |
+
LLAMA_ATTENTION_CLASSES = {
|
493 |
+
"eager": LlamaAttention,
|
494 |
+
"flash_attention_2": LlamaFlashAttention2,
|
495 |
+
"sdpa": LlamaSdpaAttention,
|
496 |
+
}
|
497 |
|
498 |
class LlamaDecoderLayer(nn.Module):
|
499 |
+
def __init__(self, config: LlamaConfig, layer_idx):
|
500 |
super().__init__()
|
501 |
self.hidden_size = config.hidden_size
|
502 |
self.self_attn = LlamaAttention(config=config)
|
503 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
504 |
self.mlp = LlamaMLP(config)
|
505 |
self.input_layernorm = MultiwayNetwork(module_provider=partial(
|
506 |
LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
|
|
|
596 |
batch_size, seq_length, _ = inputs_embeds.shape
|
597 |
else:
|
598 |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
599 |
+
|
600 |
seq_length_with_past = seq_length
|
601 |
past_key_values_length = 0
|
602 |
|
|
|
620 |
attention_mask = torch.ones(
|
621 |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
622 |
)
|
623 |
+
|
624 |
+
if self._use_flash_attention_2:
|
625 |
+
# 2d mask is passed through the layers
|
626 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
627 |
+
elif self._use_sdpa and not output_attentions:
|
628 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
629 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
630 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
631 |
+
attention_mask,
|
632 |
+
(batch_size, seq_length),
|
633 |
+
inputs_embeds,
|
634 |
+
past_key_values_length,
|
635 |
+
)
|
636 |
+
else:
|
637 |
+
# 4d mask is passed through the layers
|
638 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
639 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
640 |
+
)
|
641 |
|
642 |
hidden_states = inputs_embeds
|
643 |
|
|
|
808 |
def replace_llama_modality_adaptive():
|
809 |
transformers.models.llama.configuration_llama.LlamaConfig = LlamaConfig
|
810 |
transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
|
811 |
+
transformers.models.llama.modeling_llama.LlamaFlashAttention2 = LlamaFlashAttention2
|
812 |
+
transformers.models.llama.modeling_llama.LlamaSdpaAttention = LlamaSdpaAttention
|
813 |
transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
|
814 |
transformers.models.llama.modeling_llama.LlamaModel.forward = model_forward
|
815 |
transformers.models.llama.modeling_llama.LlamaForCausalLM.forward = causal_model_forward
|