teowu commited on
Commit
982a182
1 Parent(s): ca4437d

Upload folder using huggingface_hub

Browse files
config.json CHANGED
@@ -26,7 +26,7 @@
26
  "torch_dtype": "bfloat16",
27
  "transformers_version": "4.31.0",
28
  "tune_visual_abstractor": true,
29
- "use_cache": true,
30
  "visual_abstractor_lr": null,
31
  "visual_config": {
32
  "visual_abstractor": {
 
26
  "torch_dtype": "bfloat16",
27
  "transformers_version": "4.31.0",
28
  "tune_visual_abstractor": true,
29
+ "use_cache": false,
30
  "visual_abstractor_lr": null,
31
  "visual_config": {
32
  "visual_abstractor": {
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step376
pytorch_model-00001-of-00002.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa79ceee441c1cb8190a8712b90a249fe95b18af44e65e75e6f50dfe76d11c94
3
  size 9991591698
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d187bfd7ad6ece722f12446603cb507bdd45717e32726a12441bc737c35d1c
3
  size 9991591698
pytorch_model-00002-of-00002.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:513ef4cff7b25fe33563c17d9ccff48a3e175a114df24b0fd6c64c135507914e
3
  size 6417830970
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56898eede94bfbe91688f02ab5a03758c695aae88dee17428f5a710a85841069
3
  size 6417830970
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:569e3f96e00ce6f71c26359f4c3d353fdf576b977f9f1713b440b0de9fb09ce8
3
+ size 21687
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73d87b20a91ecef4d643e58a3fd10c41ff2bf9c4064b760dc40e29ace2e594e6
3
+ size 21687
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bcf53341194f948fcf9a3e26ad99832df1a48167bd687bf0a3c6c2a25771aa2
3
+ size 21687
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b107a39e25d7ad4a8497408ddd779fafbe9135b11896245877b7a4b6c0d8d30
3
+ size 21687
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34d3297c91cb02dc5bc5651ee04fcf26c836094e58aea2d90af5392c51300cb7
3
+ size 21687
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feaf8db8c36694d11d8c5ae2f94c53c602030053aab3bbe19182febea03576f6
3
+ size 21687
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fe964ab071c98fecd13b4cc37d7060325abbdd909b545a66cf3beb9cda1c83b
3
+ size 21687
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6fda2084a2af7ecf370c6a8aa825344fa1aec4d118137a27a983dfc78aca36
3
+ size 21687
trainer_state.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 3.0,
5
- "global_step": 564,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
@@ -10,3400 +10,2263 @@
10
  {
11
  "epoch": 0.01,
12
  "learning_rate": 1.1764705882352942e-06,
13
- "loss": 1.3477,
14
  "step": 1
15
  },
16
  {
17
  "epoch": 0.01,
18
  "learning_rate": 2.3529411764705885e-06,
19
- "loss": 1.3066,
20
  "step": 2
21
  },
22
  {
23
  "epoch": 0.02,
24
  "learning_rate": 3.529411764705883e-06,
25
- "loss": 1.2715,
26
  "step": 3
27
  },
28
  {
29
  "epoch": 0.02,
30
  "learning_rate": 4.705882352941177e-06,
31
- "loss": 1.1895,
32
  "step": 4
33
  },
34
  {
35
  "epoch": 0.03,
36
  "learning_rate": 5.882352941176471e-06,
37
- "loss": 0.8447,
38
  "step": 5
39
  },
40
  {
41
  "epoch": 0.03,
42
  "learning_rate": 7.058823529411766e-06,
43
- "loss": 0.4348,
44
  "step": 6
45
  },
46
  {
47
  "epoch": 0.04,
48
  "learning_rate": 8.23529411764706e-06,
49
- "loss": 0.178,
50
  "step": 7
51
  },
52
  {
53
  "epoch": 0.04,
54
  "learning_rate": 9.411764705882354e-06,
55
- "loss": 0.2045,
56
  "step": 8
57
  },
58
  {
59
  "epoch": 0.05,
60
  "learning_rate": 1.0588235294117648e-05,
61
- "loss": 0.1858,
62
  "step": 9
63
  },
64
  {
65
  "epoch": 0.05,
66
  "learning_rate": 1.1764705882352942e-05,
67
- "loss": 0.2524,
68
  "step": 10
69
  },
70
  {
71
  "epoch": 0.06,
72
  "learning_rate": 1.2941176470588238e-05,
73
- "loss": 0.1791,
74
  "step": 11
75
  },
76
  {
77
  "epoch": 0.06,
78
  "learning_rate": 1.4117647058823532e-05,
79
- "loss": 0.1943,
80
  "step": 12
81
  },
82
  {
83
  "epoch": 0.07,
84
  "learning_rate": 1.5294117647058822e-05,
85
- "loss": 0.2217,
86
  "step": 13
87
  },
88
  {
89
  "epoch": 0.07,
90
  "learning_rate": 1.647058823529412e-05,
91
- "loss": 0.1931,
92
  "step": 14
93
  },
94
  {
95
  "epoch": 0.08,
96
  "learning_rate": 1.7647058823529414e-05,
97
- "loss": 0.2253,
98
  "step": 15
99
  },
100
  {
101
  "epoch": 0.09,
102
  "learning_rate": 1.8823529411764708e-05,
103
- "loss": 0.1987,
104
  "step": 16
105
  },
106
  {
107
  "epoch": 0.09,
108
  "learning_rate": 2e-05,
109
- "loss": 0.2006,
110
  "step": 17
111
  },
112
  {
113
  "epoch": 0.1,
114
  "learning_rate": 1.9999835072185805e-05,
115
- "loss": 0.2017,
116
  "step": 18
117
  },
118
  {
119
  "epoch": 0.1,
120
  "learning_rate": 1.999934029418346e-05,
121
- "loss": 0.1813,
122
  "step": 19
123
  },
124
  {
125
  "epoch": 0.11,
126
  "learning_rate": 1.9998515682313485e-05,
127
- "loss": 0.152,
128
  "step": 20
129
  },
130
  {
131
  "epoch": 0.11,
132
  "learning_rate": 1.999736126377618e-05,
133
- "loss": 0.1622,
134
  "step": 21
135
  },
136
  {
137
  "epoch": 0.12,
138
  "learning_rate": 1.999587707665068e-05,
139
- "loss": 0.1814,
140
  "step": 22
141
  },
142
  {
143
  "epoch": 0.12,
144
  "learning_rate": 1.999406316989374e-05,
145
- "loss": 0.1685,
146
  "step": 23
147
  },
148
  {
149
  "epoch": 0.13,
150
  "learning_rate": 1.9991919603338088e-05,
151
- "loss": 0.1434,
152
  "step": 24
153
  },
154
  {
155
  "epoch": 0.13,
156
  "learning_rate": 1.998944644769048e-05,
157
- "loss": 0.1413,
158
  "step": 25
159
  },
160
  {
161
  "epoch": 0.14,
162
  "learning_rate": 1.9986643784529346e-05,
163
- "loss": 0.1301,
164
  "step": 26
165
  },
166
  {
167
  "epoch": 0.14,
168
  "learning_rate": 1.9983511706302102e-05,
169
- "loss": 0.1482,
170
  "step": 27
171
  },
172
  {
173
  "epoch": 0.15,
174
  "learning_rate": 1.9980050316322118e-05,
175
- "loss": 0.1357,
176
  "step": 28
177
  },
178
  {
179
  "epoch": 0.15,
180
  "learning_rate": 1.997625972876529e-05,
181
- "loss": 0.1315,
182
  "step": 29
183
  },
184
  {
185
  "epoch": 0.16,
186
  "learning_rate": 1.997214006866628e-05,
187
- "loss": 0.123,
188
  "step": 30
189
  },
190
  {
191
  "epoch": 0.16,
192
  "learning_rate": 1.9967691471914392e-05,
193
- "loss": 0.1251,
194
  "step": 31
195
  },
196
  {
197
  "epoch": 0.17,
198
  "learning_rate": 1.99629140852491e-05,
199
- "loss": 0.1368,
200
  "step": 32
201
  },
202
  {
203
  "epoch": 0.18,
204
  "learning_rate": 1.9957808066255187e-05,
205
- "loss": 0.1266,
206
  "step": 33
207
  },
208
  {
209
  "epoch": 0.18,
210
  "learning_rate": 1.9952373583357566e-05,
211
- "loss": 0.1196,
212
  "step": 34
213
  },
214
  {
215
  "epoch": 0.19,
216
  "learning_rate": 1.994661081581571e-05,
217
- "loss": 0.1137,
218
  "step": 35
219
  },
220
  {
221
  "epoch": 0.19,
222
  "learning_rate": 1.9940519953717762e-05,
223
- "loss": 0.1185,
224
  "step": 36
225
  },
226
  {
227
  "epoch": 0.2,
228
  "learning_rate": 1.993410119797422e-05,
229
- "loss": 0.131,
230
  "step": 37
231
  },
232
  {
233
  "epoch": 0.2,
234
  "learning_rate": 1.9927354760311365e-05,
235
- "loss": 0.1185,
236
  "step": 38
237
  },
238
  {
239
  "epoch": 0.21,
240
  "learning_rate": 1.992028086326424e-05,
241
- "loss": 0.1184,
242
  "step": 39
243
  },
244
  {
245
  "epoch": 0.21,
246
  "learning_rate": 1.991287974016932e-05,
247
- "loss": 0.1093,
248
  "step": 40
249
  },
250
  {
251
  "epoch": 0.22,
252
  "learning_rate": 1.9905151635156813e-05,
253
- "loss": 0.1136,
254
  "step": 41
255
  },
256
  {
257
  "epoch": 0.22,
258
  "learning_rate": 1.9897096803142616e-05,
259
- "loss": 0.1177,
260
  "step": 42
261
  },
262
  {
263
  "epoch": 0.23,
264
  "learning_rate": 1.988871550981989e-05,
265
- "loss": 0.1041,
266
  "step": 43
267
  },
268
  {
269
  "epoch": 0.23,
270
  "learning_rate": 1.988000803165032e-05,
271
- "loss": 0.1064,
272
  "step": 44
273
  },
274
  {
275
  "epoch": 0.24,
276
  "learning_rate": 1.9870974655854974e-05,
277
- "loss": 0.1177,
278
  "step": 45
279
  },
280
  {
281
  "epoch": 0.24,
282
  "learning_rate": 1.9861615680404833e-05,
283
- "loss": 0.0954,
284
  "step": 46
285
  },
286
  {
287
  "epoch": 0.25,
288
  "learning_rate": 1.985193141401097e-05,
289
- "loss": 0.0953,
290
  "step": 47
291
  },
292
  {
293
  "epoch": 0.26,
294
  "learning_rate": 1.9841922176114366e-05,
295
- "loss": 0.1147,
296
  "step": 48
297
  },
298
  {
299
  "epoch": 0.26,
300
  "learning_rate": 1.9831588296875367e-05,
301
- "loss": 0.1036,
302
  "step": 49
303
  },
304
  {
305
  "epoch": 0.27,
306
  "learning_rate": 1.982093011716279e-05,
307
- "loss": 0.1245,
308
  "step": 50
309
  },
310
  {
311
  "epoch": 0.27,
312
  "learning_rate": 1.9809947988542696e-05,
313
- "loss": 0.0963,
314
  "step": 51
315
  },
316
  {
317
  "epoch": 0.28,
318
  "learning_rate": 1.979864227326678e-05,
319
- "loss": 0.1027,
320
  "step": 52
321
  },
322
  {
323
  "epoch": 0.28,
324
  "learning_rate": 1.9787013344260422e-05,
325
- "loss": 0.12,
326
  "step": 53
327
  },
328
  {
329
  "epoch": 0.29,
330
  "learning_rate": 1.9775061585110387e-05,
331
- "loss": 0.1127,
332
  "step": 54
333
  },
334
  {
335
  "epoch": 0.29,
336
  "learning_rate": 1.976278739005218e-05,
337
- "loss": 0.0938,
338
  "step": 55
339
  },
340
  {
341
  "epoch": 0.3,
342
  "learning_rate": 1.9750191163957042e-05,
343
- "loss": 0.1003,
344
  "step": 56
345
  },
346
  {
347
  "epoch": 0.3,
348
  "learning_rate": 1.9737273322318565e-05,
349
- "loss": 0.1057,
350
  "step": 57
351
  },
352
  {
353
  "epoch": 0.31,
354
  "learning_rate": 1.972403429123904e-05,
355
- "loss": 0.0957,
356
  "step": 58
357
  },
358
  {
359
  "epoch": 0.31,
360
  "learning_rate": 1.971047450741535e-05,
361
- "loss": 0.1039,
362
  "step": 59
363
  },
364
  {
365
  "epoch": 0.32,
366
  "learning_rate": 1.9696594418124598e-05,
367
- "loss": 0.0898,
368
  "step": 60
369
  },
370
  {
371
  "epoch": 0.32,
372
  "learning_rate": 1.9682394481209338e-05,
373
- "loss": 0.103,
374
  "step": 61
375
  },
376
  {
377
  "epoch": 0.33,
378
  "learning_rate": 1.966787516506249e-05,
379
- "loss": 0.1042,
380
  "step": 62
381
  },
382
  {
383
  "epoch": 0.34,
384
  "learning_rate": 1.9653036948611864e-05,
385
- "loss": 0.0981,
386
  "step": 63
387
  },
388
  {
389
  "epoch": 0.34,
390
  "learning_rate": 1.9637880321304387e-05,
391
- "loss": 0.0898,
392
  "step": 64
393
  },
394
  {
395
  "epoch": 0.35,
396
  "learning_rate": 1.962240578308993e-05,
397
- "loss": 0.0942,
398
  "step": 65
399
  },
400
  {
401
  "epoch": 0.35,
402
  "learning_rate": 1.9606613844404853e-05,
403
- "loss": 0.1087,
404
  "step": 66
405
  },
406
  {
407
  "epoch": 0.36,
408
  "learning_rate": 1.9590505026155146e-05,
409
- "loss": 0.1009,
410
  "step": 67
411
  },
412
  {
413
  "epoch": 0.36,
414
  "learning_rate": 1.9574079859699236e-05,
415
- "loss": 0.0959,
416
  "step": 68
417
  },
418
  {
419
  "epoch": 0.37,
420
  "learning_rate": 1.955733888683049e-05,
421
- "loss": 0.0924,
422
  "step": 69
423
  },
424
  {
425
  "epoch": 0.37,
426
  "learning_rate": 1.9540282659759317e-05,
427
- "loss": 0.0859,
428
  "step": 70
429
  },
430
  {
431
  "epoch": 0.38,
432
  "learning_rate": 1.9522911741094966e-05,
433
- "loss": 0.0894,
434
  "step": 71
435
  },
436
  {
437
  "epoch": 0.38,
438
  "learning_rate": 1.9505226703826973e-05,
439
- "loss": 0.0947,
440
  "step": 72
441
  },
442
  {
443
  "epoch": 0.39,
444
  "learning_rate": 1.948722813130624e-05,
445
- "loss": 0.0853,
446
  "step": 73
447
  },
448
  {
449
  "epoch": 0.39,
450
  "learning_rate": 1.9468916617225814e-05,
451
- "loss": 0.0885,
452
  "step": 74
453
  },
454
  {
455
  "epoch": 0.4,
456
  "learning_rate": 1.9450292765601287e-05,
457
- "loss": 0.0809,
458
  "step": 75
459
  },
460
  {
461
  "epoch": 0.4,
462
  "learning_rate": 1.94313571907509e-05,
463
- "loss": 0.0858,
464
  "step": 76
465
  },
466
  {
467
  "epoch": 0.41,
468
  "learning_rate": 1.941211051727524e-05,
469
- "loss": 0.1113,
470
  "step": 77
471
  },
472
  {
473
  "epoch": 0.41,
474
  "learning_rate": 1.939255338003666e-05,
475
- "loss": 0.0964,
476
  "step": 78
477
  },
478
  {
479
  "epoch": 0.42,
480
  "learning_rate": 1.937268642413835e-05,
481
- "loss": 0.1083,
482
  "step": 79
483
  },
484
  {
485
  "epoch": 0.43,
486
  "learning_rate": 1.9352510304903017e-05,
487
- "loss": 0.1043,
488
  "step": 80
489
  },
490
  {
491
  "epoch": 0.43,
492
  "learning_rate": 1.9332025687851325e-05,
493
- "loss": 0.0909,
494
  "step": 81
495
  },
496
  {
497
  "epoch": 0.44,
498
  "learning_rate": 1.931123324867989e-05,
499
- "loss": 0.1097,
500
  "step": 82
501
  },
502
  {
503
  "epoch": 0.44,
504
  "learning_rate": 1.929013367323902e-05,
505
- "loss": 0.0869,
506
  "step": 83
507
  },
508
  {
509
  "epoch": 0.45,
510
  "learning_rate": 1.926872765751009e-05,
511
- "loss": 0.0774,
512
  "step": 84
513
  },
514
  {
515
  "epoch": 0.45,
516
  "learning_rate": 1.9247015907582574e-05,
517
- "loss": 0.0778,
518
  "step": 85
519
  },
520
  {
521
  "epoch": 0.46,
522
  "learning_rate": 1.9224999139630766e-05,
523
- "loss": 0.0831,
524
  "step": 86
525
  },
526
  {
527
  "epoch": 0.46,
528
  "learning_rate": 1.920267807989015e-05,
529
- "loss": 0.0833,
530
  "step": 87
531
  },
532
  {
533
  "epoch": 0.47,
534
  "learning_rate": 1.918005346463344e-05,
535
- "loss": 0.0837,
536
  "step": 88
537
  },
538
  {
539
  "epoch": 0.47,
540
  "learning_rate": 1.9157126040146307e-05,
541
- "loss": 0.0811,
542
  "step": 89
543
  },
544
  {
545
  "epoch": 0.48,
546
  "learning_rate": 1.9133896562702746e-05,
547
- "loss": 0.094,
548
  "step": 90
549
  },
550
  {
551
  "epoch": 0.48,
552
  "learning_rate": 1.911036579854016e-05,
553
- "loss": 0.0878,
554
  "step": 91
555
  },
556
  {
557
  "epoch": 0.49,
558
  "learning_rate": 1.9086534523834032e-05,
559
- "loss": 0.0904,
560
  "step": 92
561
  },
562
  {
563
  "epoch": 0.49,
564
  "learning_rate": 1.906240352467238e-05,
565
- "loss": 0.0889,
566
  "step": 93
567
  },
568
  {
569
  "epoch": 0.5,
570
  "learning_rate": 1.9037973597029796e-05,
571
- "loss": 0.0789,
572
  "step": 94
573
  },
574
  {
575
  "epoch": 0.51,
576
  "learning_rate": 1.901324554674119e-05,
577
- "loss": 0.0859,
578
  "step": 95
579
  },
580
  {
581
  "epoch": 0.51,
582
  "learning_rate": 1.8988220189475216e-05,
583
- "loss": 0.1014,
584
  "step": 96
585
  },
586
  {
587
  "epoch": 0.52,
588
  "learning_rate": 1.896289835070737e-05,
589
- "loss": 0.0806,
590
  "step": 97
591
  },
592
  {
593
  "epoch": 0.52,
594
  "learning_rate": 1.893728086569276e-05,
595
- "loss": 0.0892,
596
  "step": 98
597
  },
598
  {
599
  "epoch": 0.53,
600
  "learning_rate": 1.891136857943854e-05,
601
- "loss": 0.0906,
602
  "step": 99
603
  },
604
  {
605
  "epoch": 0.53,
606
  "learning_rate": 1.8885162346676063e-05,
607
- "loss": 0.0906,
608
  "step": 100
609
  },
610
  {
611
  "epoch": 0.54,
612
  "learning_rate": 1.8858663031832665e-05,
613
- "loss": 0.0883,
614
  "step": 101
615
  },
616
  {
617
  "epoch": 0.54,
618
  "learning_rate": 1.8831871509003164e-05,
619
- "loss": 0.0997,
620
  "step": 102
621
  },
622
  {
623
  "epoch": 0.55,
624
  "learning_rate": 1.8804788661921012e-05,
625
- "loss": 0.0902,
626
  "step": 103
627
  },
628
  {
629
  "epoch": 0.55,
630
  "learning_rate": 1.877741538392917e-05,
631
- "loss": 0.0941,
632
  "step": 104
633
  },
634
  {
635
  "epoch": 0.56,
636
  "learning_rate": 1.8749752577950614e-05,
637
- "loss": 0.0841,
638
  "step": 105
639
  },
640
  {
641
  "epoch": 0.56,
642
  "learning_rate": 1.8721801156458573e-05,
643
- "loss": 0.0859,
644
  "step": 106
645
  },
646
  {
647
  "epoch": 0.57,
648
  "learning_rate": 1.869356204144642e-05,
649
- "loss": 0.1028,
650
  "step": 107
651
  },
652
  {
653
  "epoch": 0.57,
654
  "learning_rate": 1.866503616439725e-05,
655
- "loss": 0.082,
656
  "step": 108
657
  },
658
  {
659
  "epoch": 0.58,
660
  "learning_rate": 1.8636224466253177e-05,
661
- "loss": 0.08,
662
  "step": 109
663
  },
664
  {
665
  "epoch": 0.59,
666
  "learning_rate": 1.860712789738428e-05,
667
- "loss": 0.0923,
668
  "step": 110
669
  },
670
  {
671
  "epoch": 0.59,
672
  "learning_rate": 1.857774741755726e-05,
673
- "loss": 0.0828,
674
  "step": 111
675
  },
676
  {
677
  "epoch": 0.6,
678
  "learning_rate": 1.854808399590378e-05,
679
- "loss": 0.0829,
680
  "step": 112
681
  },
682
  {
683
  "epoch": 0.6,
684
  "learning_rate": 1.8518138610888505e-05,
685
- "loss": 0.0792,
686
  "step": 113
687
  },
688
  {
689
  "epoch": 0.61,
690
  "learning_rate": 1.8487912250276805e-05,
691
- "loss": 0.0822,
692
  "step": 114
693
  },
694
  {
695
  "epoch": 0.61,
696
  "learning_rate": 1.8457405911102202e-05,
697
- "loss": 0.0882,
698
  "step": 115
699
  },
700
  {
701
  "epoch": 0.62,
702
  "learning_rate": 1.8426620599633464e-05,
703
- "loss": 0.0839,
704
  "step": 116
705
  },
706
  {
707
  "epoch": 0.62,
708
  "learning_rate": 1.8395557331341413e-05,
709
- "loss": 0.0876,
710
  "step": 117
711
  },
712
  {
713
  "epoch": 0.63,
714
  "learning_rate": 1.836421713086544e-05,
715
- "loss": 0.0921,
716
  "step": 118
717
  },
718
  {
719
  "epoch": 0.63,
720
  "learning_rate": 1.83326010319797e-05,
721
- "loss": 0.0945,
722
  "step": 119
723
  },
724
  {
725
  "epoch": 0.64,
726
  "learning_rate": 1.830071007755901e-05,
727
- "loss": 0.0752,
728
  "step": 120
729
  },
730
  {
731
  "epoch": 0.64,
732
  "learning_rate": 1.8268545319544443e-05,
733
- "loss": 0.1024,
734
  "step": 121
735
  },
736
  {
737
  "epoch": 0.65,
738
  "learning_rate": 1.823610781890865e-05,
739
- "loss": 0.0875,
740
  "step": 122
741
  },
742
  {
743
  "epoch": 0.65,
744
  "learning_rate": 1.820339864562085e-05,
745
- "loss": 0.0809,
746
  "step": 123
747
  },
748
  {
749
  "epoch": 0.66,
750
  "learning_rate": 1.817041887861153e-05,
751
- "loss": 0.0944,
752
  "step": 124
753
  },
754
  {
755
  "epoch": 0.66,
756
  "learning_rate": 1.8137169605736867e-05,
757
- "loss": 0.0728,
758
  "step": 125
759
  },
760
  {
761
  "epoch": 0.67,
762
  "learning_rate": 1.8103651923742846e-05,
763
- "loss": 0.0862,
764
  "step": 126
765
  },
766
  {
767
  "epoch": 0.68,
768
  "learning_rate": 1.8069866938229066e-05,
769
- "loss": 0.092,
770
  "step": 127
771
  },
772
  {
773
  "epoch": 0.68,
774
  "learning_rate": 1.8035815763612293e-05,
775
- "loss": 0.0811,
776
  "step": 128
777
  },
778
  {
779
  "epoch": 0.69,
780
  "learning_rate": 1.8001499523089683e-05,
781
- "loss": 0.1011,
782
  "step": 129
783
  },
784
  {
785
  "epoch": 0.69,
786
  "learning_rate": 1.7966919348601754e-05,
787
- "loss": 0.0862,
788
  "step": 130
789
  },
790
  {
791
  "epoch": 0.7,
792
  "learning_rate": 1.7932076380795017e-05,
793
- "loss": 0.0892,
794
  "step": 131
795
  },
796
  {
797
  "epoch": 0.7,
798
  "learning_rate": 1.7896971768984373e-05,
799
- "loss": 0.0988,
800
  "step": 132
801
  },
802
  {
803
  "epoch": 0.71,
804
  "learning_rate": 1.7861606671115207e-05,
805
- "loss": 0.0851,
806
  "step": 133
807
  },
808
  {
809
  "epoch": 0.71,
810
  "learning_rate": 1.7825982253725175e-05,
811
- "loss": 0.0884,
812
  "step": 134
813
  },
814
  {
815
  "epoch": 0.72,
816
  "learning_rate": 1.7790099691905736e-05,
817
- "loss": 0.0945,
818
  "step": 135
819
  },
820
  {
821
  "epoch": 0.72,
822
  "learning_rate": 1.7753960169263387e-05,
823
- "loss": 0.0739,
824
  "step": 136
825
  },
826
  {
827
  "epoch": 0.73,
828
  "learning_rate": 1.7717564877880623e-05,
829
- "loss": 0.0878,
830
  "step": 137
831
  },
832
  {
833
  "epoch": 0.73,
834
  "learning_rate": 1.7680915018276613e-05,
835
- "loss": 0.0948,
836
  "step": 138
837
  },
838
  {
839
  "epoch": 0.74,
840
  "learning_rate": 1.764401179936761e-05,
841
- "loss": 0.0765,
842
  "step": 139
843
  },
844
  {
845
  "epoch": 0.74,
846
  "learning_rate": 1.7606856438427054e-05,
847
- "loss": 0.094,
848
  "step": 140
849
  },
850
  {
851
  "epoch": 0.75,
852
  "learning_rate": 1.7569450161045444e-05,
853
- "loss": 0.0806,
854
  "step": 141
855
  },
856
  {
857
  "epoch": 0.76,
858
  "learning_rate": 1.7531794201089888e-05,
859
- "loss": 0.0906,
860
  "step": 142
861
  },
862
  {
863
  "epoch": 0.76,
864
  "learning_rate": 1.749388980066342e-05,
865
- "loss": 0.0858,
866
  "step": 143
867
  },
868
  {
869
  "epoch": 0.77,
870
  "learning_rate": 1.745573821006403e-05,
871
- "loss": 0.0805,
872
  "step": 144
873
  },
874
  {
875
  "epoch": 0.77,
876
  "learning_rate": 1.7417340687743393e-05,
877
- "loss": 0.0858,
878
  "step": 145
879
  },
880
  {
881
  "epoch": 0.78,
882
  "learning_rate": 1.7378698500265402e-05,
883
- "loss": 0.0903,
884
  "step": 146
885
  },
886
  {
887
  "epoch": 0.78,
888
  "learning_rate": 1.7339812922264366e-05,
889
- "loss": 0.0771,
890
  "step": 147
891
  },
892
  {
893
  "epoch": 0.79,
894
  "learning_rate": 1.730068523640295e-05,
895
- "loss": 0.0853,
896
  "step": 148
897
  },
898
  {
899
  "epoch": 0.79,
900
  "learning_rate": 1.72613167333299e-05,
901
- "loss": 0.0961,
902
  "step": 149
903
  },
904
  {
905
  "epoch": 0.8,
906
  "learning_rate": 1.7221708711637455e-05,
907
- "loss": 0.085,
908
  "step": 150
909
  },
910
  {
911
  "epoch": 0.8,
912
  "learning_rate": 1.718186247781849e-05,
913
- "loss": 0.0756,
914
  "step": 151
915
  },
916
  {
917
  "epoch": 0.81,
918
  "learning_rate": 1.7141779346223465e-05,
919
- "loss": 0.0884,
920
  "step": 152
921
  },
922
  {
923
  "epoch": 0.81,
924
  "learning_rate": 1.7101460639017034e-05,
925
- "loss": 0.0665,
926
  "step": 153
927
  },
928
  {
929
  "epoch": 0.82,
930
  "learning_rate": 1.7060907686134445e-05,
931
- "loss": 0.0923,
932
  "step": 154
933
  },
934
  {
935
  "epoch": 0.82,
936
  "learning_rate": 1.7020121825237672e-05,
937
- "loss": 0.0891,
938
  "step": 155
939
  },
940
  {
941
  "epoch": 0.83,
942
  "learning_rate": 1.6979104401671296e-05,
943
- "loss": 0.0838,
944
  "step": 156
945
  },
946
  {
947
  "epoch": 0.84,
948
  "learning_rate": 1.693785676841812e-05,
949
- "loss": 0.0989,
950
  "step": 157
951
  },
952
  {
953
  "epoch": 0.84,
954
  "learning_rate": 1.6896380286054537e-05,
955
- "loss": 0.0729,
956
  "step": 158
957
  },
958
  {
959
  "epoch": 0.85,
960
  "learning_rate": 1.6854676322705673e-05,
961
- "loss": 0.0876,
962
  "step": 159
963
  },
964
  {
965
  "epoch": 0.85,
966
  "learning_rate": 1.6812746254000222e-05,
967
- "loss": 0.0898,
968
  "step": 160
969
  },
970
  {
971
  "epoch": 0.86,
972
  "learning_rate": 1.67705914630251e-05,
973
- "loss": 0.0836,
974
  "step": 161
975
  },
976
  {
977
  "epoch": 0.86,
978
  "learning_rate": 1.6728213340279822e-05,
979
- "loss": 0.0954,
980
  "step": 162
981
  },
982
  {
983
  "epoch": 0.87,
984
  "learning_rate": 1.668561328363061e-05,
985
- "loss": 0.083,
986
  "step": 163
987
  },
988
  {
989
  "epoch": 0.87,
990
  "learning_rate": 1.6642792698264313e-05,
991
- "loss": 0.0829,
992
  "step": 164
993
  },
994
  {
995
  "epoch": 0.88,
996
  "learning_rate": 1.6599752996642044e-05,
997
- "loss": 0.0959,
998
  "step": 165
999
  },
1000
  {
1001
  "epoch": 0.88,
1002
  "learning_rate": 1.655649559845258e-05,
1003
- "loss": 0.0827,
1004
  "step": 166
1005
  },
1006
  {
1007
  "epoch": 0.89,
1008
  "learning_rate": 1.651302193056555e-05,
1009
- "loss": 0.084,
1010
  "step": 167
1011
  },
1012
  {
1013
  "epoch": 0.89,
1014
  "learning_rate": 1.6469333426984357e-05,
1015
- "loss": 0.0812,
1016
  "step": 168
1017
  },
1018
  {
1019
  "epoch": 0.9,
1020
  "learning_rate": 1.6425431528798883e-05,
1021
- "loss": 0.0833,
1022
  "step": 169
1023
  },
1024
  {
1025
  "epoch": 0.9,
1026
  "learning_rate": 1.6381317684137946e-05,
1027
- "loss": 0.0726,
1028
  "step": 170
1029
  },
1030
  {
1031
  "epoch": 0.91,
1032
  "learning_rate": 1.6336993348121543e-05,
1033
- "loss": 0.0886,
1034
  "step": 171
1035
  },
1036
  {
1037
  "epoch": 0.91,
1038
  "learning_rate": 1.6292459982812845e-05,
1039
- "loss": 0.0992,
1040
  "step": 172
1041
  },
1042
  {
1043
  "epoch": 0.92,
1044
  "learning_rate": 1.624771905716997e-05,
1045
- "loss": 0.0881,
1046
  "step": 173
1047
  },
1048
  {
1049
  "epoch": 0.93,
1050
  "learning_rate": 1.620277204699754e-05,
1051
- "loss": 0.0777,
1052
  "step": 174
1053
  },
1054
  {
1055
  "epoch": 0.93,
1056
  "learning_rate": 1.615762043489797e-05,
1057
- "loss": 0.0806,
1058
  "step": 175
1059
  },
1060
  {
1061
  "epoch": 0.94,
1062
  "learning_rate": 1.611226571022261e-05,
1063
- "loss": 0.091,
1064
  "step": 176
1065
  },
1066
  {
1067
  "epoch": 0.94,
1068
  "learning_rate": 1.6066709369022576e-05,
1069
- "loss": 0.0709,
1070
  "step": 177
1071
  },
1072
  {
1073
  "epoch": 0.95,
1074
  "learning_rate": 1.6020952913999423e-05,
1075
- "loss": 0.0728,
1076
  "step": 178
1077
  },
1078
  {
1079
  "epoch": 0.95,
1080
  "learning_rate": 1.5974997854455575e-05,
1081
- "loss": 0.0806,
1082
  "step": 179
1083
  },
1084
  {
1085
  "epoch": 0.96,
1086
  "learning_rate": 1.5928845706244537e-05,
1087
- "loss": 0.1002,
1088
  "step": 180
1089
  },
1090
  {
1091
  "epoch": 0.96,
1092
  "learning_rate": 1.588249799172089e-05,
1093
- "loss": 0.0818,
1094
  "step": 181
1095
  },
1096
  {
1097
  "epoch": 0.97,
1098
  "learning_rate": 1.583595623969009e-05,
1099
- "loss": 0.09,
1100
  "step": 182
1101
  },
1102
  {
1103
  "epoch": 0.97,
1104
  "learning_rate": 1.5789221985358017e-05,
1105
- "loss": 0.09,
1106
  "step": 183
1107
  },
1108
  {
1109
  "epoch": 0.98,
1110
  "learning_rate": 1.574229677028036e-05,
1111
- "loss": 0.0827,
1112
  "step": 184
1113
  },
1114
  {
1115
  "epoch": 0.98,
1116
  "learning_rate": 1.5695182142311743e-05,
1117
- "loss": 0.083,
1118
  "step": 185
1119
  },
1120
  {
1121
  "epoch": 0.99,
1122
  "learning_rate": 1.564787965555469e-05,
1123
- "loss": 0.0675,
1124
  "step": 186
1125
  },
1126
  {
1127
  "epoch": 0.99,
1128
  "learning_rate": 1.560039087030836e-05,
1129
- "loss": 0.079,
1130
  "step": 187
1131
  },
1132
  {
1133
  "epoch": 1.0,
1134
  "learning_rate": 1.5552717353017045e-05,
1135
- "loss": 0.0925,
1136
  "step": 188
1137
  },
1138
  {
1139
  "epoch": 1.01,
1140
  "learning_rate": 1.5504860676218557e-05,
1141
- "loss": 0.0737,
1142
  "step": 189
1143
  },
1144
  {
1145
  "epoch": 1.01,
1146
  "learning_rate": 1.5456822418492312e-05,
1147
- "loss": 0.0717,
1148
  "step": 190
1149
  },
1150
  {
1151
  "epoch": 1.02,
1152
  "learning_rate": 1.540860416440728e-05,
1153
- "loss": 0.0774,
1154
  "step": 191
1155
  },
1156
  {
1157
  "epoch": 1.02,
1158
  "learning_rate": 1.5360207504469715e-05,
1159
- "loss": 0.0681,
1160
  "step": 192
1161
  },
1162
  {
1163
  "epoch": 1.03,
1164
  "learning_rate": 1.5311634035070678e-05,
1165
- "loss": 0.0726,
1166
  "step": 193
1167
  },
1168
  {
1169
  "epoch": 1.03,
1170
  "learning_rate": 1.5262885358433404e-05,
1171
- "loss": 0.0782,
1172
  "step": 194
1173
  },
1174
  {
1175
  "epoch": 1.04,
1176
  "learning_rate": 1.5213963082560424e-05,
1177
- "loss": 0.0759,
1178
  "step": 195
1179
  },
1180
  {
1181
  "epoch": 1.04,
1182
  "learning_rate": 1.5164868821180538e-05,
1183
- "loss": 0.069,
1184
  "step": 196
1185
  },
1186
  {
1187
  "epoch": 1.05,
1188
  "learning_rate": 1.5115604193695599e-05,
1189
- "loss": 0.0862,
1190
  "step": 197
1191
  },
1192
  {
1193
  "epoch": 1.05,
1194
  "learning_rate": 1.5066170825127069e-05,
1195
- "loss": 0.0665,
1196
  "step": 198
1197
  },
1198
  {
1199
  "epoch": 1.06,
1200
  "learning_rate": 1.5016570346062432e-05,
1201
- "loss": 0.0663,
1202
  "step": 199
1203
  },
1204
  {
1205
  "epoch": 1.06,
1206
  "learning_rate": 1.496680439260141e-05,
1207
- "loss": 0.0681,
1208
  "step": 200
1209
  },
1210
  {
1211
  "epoch": 1.07,
1212
  "learning_rate": 1.4916874606301989e-05,
1213
- "loss": 0.054,
1214
  "step": 201
1215
  },
1216
  {
1217
  "epoch": 1.07,
1218
  "learning_rate": 1.4866782634126266e-05,
1219
- "loss": 0.0649,
1220
  "step": 202
1221
  },
1222
  {
1223
  "epoch": 1.08,
1224
  "learning_rate": 1.4816530128386144e-05,
1225
- "loss": 0.0605,
1226
  "step": 203
1227
  },
1228
  {
1229
  "epoch": 1.09,
1230
  "learning_rate": 1.4766118746688805e-05,
1231
- "loss": 0.0631,
1232
  "step": 204
1233
  },
1234
  {
1235
  "epoch": 1.09,
1236
  "learning_rate": 1.471555015188205e-05,
1237
- "loss": 0.0699,
1238
  "step": 205
1239
  },
1240
  {
1241
  "epoch": 1.1,
1242
  "learning_rate": 1.4664826011999436e-05,
1243
- "loss": 0.0669,
1244
  "step": 206
1245
  },
1246
  {
1247
  "epoch": 1.1,
1248
  "learning_rate": 1.4613948000205272e-05,
1249
- "loss": 0.0589,
1250
  "step": 207
1251
  },
1252
  {
1253
  "epoch": 1.11,
1254
  "learning_rate": 1.4562917794739412e-05,
1255
- "loss": 0.063,
1256
  "step": 208
1257
  },
1258
  {
1259
  "epoch": 1.11,
1260
  "learning_rate": 1.4511737078861903e-05,
1261
- "loss": 0.0648,
1262
  "step": 209
1263
  },
1264
  {
1265
  "epoch": 1.12,
1266
  "learning_rate": 1.4460407540797467e-05,
1267
- "loss": 0.0624,
1268
  "step": 210
1269
  },
1270
  {
1271
  "epoch": 1.12,
1272
  "learning_rate": 1.4408930873679805e-05,
1273
- "loss": 0.0695,
1274
  "step": 211
1275
  },
1276
  {
1277
  "epoch": 1.13,
1278
  "learning_rate": 1.4357308775495757e-05,
1279
- "loss": 0.0563,
1280
  "step": 212
1281
  },
1282
  {
1283
  "epoch": 1.13,
1284
  "learning_rate": 1.4305542949029286e-05,
1285
- "loss": 0.0605,
1286
  "step": 213
1287
  },
1288
  {
1289
  "epoch": 1.14,
1290
  "learning_rate": 1.4253635101805313e-05,
1291
- "loss": 0.074,
1292
  "step": 214
1293
  },
1294
  {
1295
  "epoch": 1.14,
1296
  "learning_rate": 1.4201586946033397e-05,
1297
- "loss": 0.0666,
1298
  "step": 215
1299
  },
1300
  {
1301
  "epoch": 1.15,
1302
  "learning_rate": 1.4149400198551247e-05,
1303
- "loss": 0.0792,
1304
  "step": 216
1305
  },
1306
  {
1307
  "epoch": 1.15,
1308
  "learning_rate": 1.4097076580768103e-05,
1309
- "loss": 0.0567,
1310
  "step": 217
1311
  },
1312
  {
1313
  "epoch": 1.16,
1314
  "learning_rate": 1.4044617818607949e-05,
1315
- "loss": 0.058,
1316
  "step": 218
1317
  },
1318
  {
1319
  "epoch": 1.16,
1320
  "learning_rate": 1.3992025642452579e-05,
1321
- "loss": 0.0616,
1322
  "step": 219
1323
  },
1324
  {
1325
  "epoch": 1.17,
1326
  "learning_rate": 1.3939301787084522e-05,
1327
- "loss": 0.0711,
1328
  "step": 220
1329
  },
1330
  {
1331
  "epoch": 1.18,
1332
  "learning_rate": 1.3886447991629828e-05,
1333
- "loss": 0.0609,
1334
  "step": 221
1335
  },
1336
  {
1337
  "epoch": 1.18,
1338
  "learning_rate": 1.3833465999500689e-05,
1339
- "loss": 0.0603,
1340
  "step": 222
1341
  },
1342
  {
1343
  "epoch": 1.19,
1344
  "learning_rate": 1.3780357558337927e-05,
1345
- "loss": 0.0761,
1346
  "step": 223
1347
  },
1348
  {
1349
  "epoch": 1.19,
1350
  "learning_rate": 1.372712441995337e-05,
1351
- "loss": 0.0611,
1352
  "step": 224
1353
  },
1354
  {
1355
  "epoch": 1.2,
1356
  "learning_rate": 1.3673768340272053e-05,
1357
- "loss": 0.0701,
1358
  "step": 225
1359
  },
1360
  {
1361
  "epoch": 1.2,
1362
  "learning_rate": 1.362029107927429e-05,
1363
- "loss": 0.0644,
1364
  "step": 226
1365
  },
1366
  {
1367
  "epoch": 1.21,
1368
  "learning_rate": 1.3566694400937635e-05,
1369
- "loss": 0.0601,
1370
  "step": 227
1371
  },
1372
  {
1373
  "epoch": 1.21,
1374
  "learning_rate": 1.3512980073178693e-05,
1375
- "loss": 0.062,
1376
  "step": 228
1377
  },
1378
  {
1379
  "epoch": 1.22,
1380
  "learning_rate": 1.3459149867794794e-05,
1381
- "loss": 0.0847,
1382
  "step": 229
1383
  },
1384
  {
1385
  "epoch": 1.22,
1386
  "learning_rate": 1.3405205560405558e-05,
1387
- "loss": 0.0656,
1388
  "step": 230
1389
  },
1390
  {
1391
  "epoch": 1.23,
1392
  "learning_rate": 1.3351148930394333e-05,
1393
- "loss": 0.0586,
1394
  "step": 231
1395
  },
1396
  {
1397
  "epoch": 1.23,
1398
  "learning_rate": 1.329698176084948e-05,
1399
- "loss": 0.0597,
1400
  "step": 232
1401
  },
1402
  {
1403
  "epoch": 1.24,
1404
  "learning_rate": 1.3242705838505577e-05,
1405
- "loss": 0.0596,
1406
  "step": 233
1407
  },
1408
  {
1409
  "epoch": 1.24,
1410
  "learning_rate": 1.3188322953684467e-05,
1411
- "loss": 0.0655,
1412
  "step": 234
1413
  },
1414
  {
1415
  "epoch": 1.25,
1416
  "learning_rate": 1.3133834900236217e-05,
1417
- "loss": 0.067,
1418
  "step": 235
1419
  },
1420
  {
1421
  "epoch": 1.26,
1422
  "learning_rate": 1.3079243475479942e-05,
1423
- "loss": 0.0642,
1424
  "step": 236
1425
  },
1426
  {
1427
  "epoch": 1.26,
1428
  "learning_rate": 1.3024550480144506e-05,
1429
- "loss": 0.0634,
1430
  "step": 237
1431
  },
1432
  {
1433
  "epoch": 1.27,
1434
  "learning_rate": 1.296975771830915e-05,
1435
- "loss": 0.0689,
1436
  "step": 238
1437
  },
1438
  {
1439
  "epoch": 1.27,
1440
  "learning_rate": 1.2914866997343957e-05,
1441
- "loss": 0.0611,
1442
  "step": 239
1443
  },
1444
  {
1445
  "epoch": 1.28,
1446
  "learning_rate": 1.2859880127850258e-05,
1447
- "loss": 0.0574,
1448
  "step": 240
1449
  },
1450
  {
1451
  "epoch": 1.28,
1452
  "learning_rate": 1.2804798923600888e-05,
1453
- "loss": 0.0742,
1454
  "step": 241
1455
  },
1456
  {
1457
  "epoch": 1.29,
1458
  "learning_rate": 1.2749625201480375e-05,
1459
- "loss": 0.0576,
1460
  "step": 242
1461
  },
1462
  {
1463
  "epoch": 1.29,
1464
  "learning_rate": 1.2694360781424994e-05,
1465
- "loss": 0.0731,
1466
  "step": 243
1467
  },
1468
  {
1469
  "epoch": 1.3,
1470
  "learning_rate": 1.2639007486362745e-05,
1471
- "loss": 0.087,
1472
  "step": 244
1473
  },
1474
  {
1475
  "epoch": 1.3,
1476
  "learning_rate": 1.2583567142153224e-05,
1477
- "loss": 0.0678,
1478
  "step": 245
1479
  },
1480
  {
1481
  "epoch": 1.31,
1482
  "learning_rate": 1.2528041577527384e-05,
1483
- "loss": 0.0742,
1484
  "step": 246
1485
  },
1486
  {
1487
  "epoch": 1.31,
1488
  "learning_rate": 1.2472432624027228e-05,
1489
- "loss": 0.0674,
1490
  "step": 247
1491
  },
1492
  {
1493
  "epoch": 1.32,
1494
  "learning_rate": 1.2416742115945391e-05,
1495
- "loss": 0.0666,
1496
  "step": 248
1497
  },
1498
  {
1499
  "epoch": 1.32,
1500
  "learning_rate": 1.2360971890264621e-05,
1501
- "loss": 0.0629,
1502
  "step": 249
1503
  },
1504
  {
1505
  "epoch": 1.33,
1506
  "learning_rate": 1.2305123786597202e-05,
1507
- "loss": 0.063,
1508
  "step": 250
1509
  },
1510
  {
1511
  "epoch": 1.34,
1512
  "learning_rate": 1.224919964712427e-05,
1513
- "loss": 0.0714,
1514
  "step": 251
1515
  },
1516
  {
1517
  "epoch": 1.34,
1518
  "learning_rate": 1.219320131653504e-05,
1519
- "loss": 0.0739,
1520
  "step": 252
1521
  },
1522
  {
1523
  "epoch": 1.35,
1524
  "learning_rate": 1.2137130641965964e-05,
1525
- "loss": 0.0811,
1526
  "step": 253
1527
  },
1528
  {
1529
  "epoch": 1.35,
1530
  "learning_rate": 1.20809894729398e-05,
1531
- "loss": 0.0613,
1532
  "step": 254
1533
  },
1534
  {
1535
  "epoch": 1.36,
1536
  "learning_rate": 1.2024779661304614e-05,
1537
- "loss": 0.0659,
1538
  "step": 255
1539
  },
1540
  {
1541
  "epoch": 1.36,
1542
  "learning_rate": 1.1968503061172674e-05,
1543
- "loss": 0.0561,
1544
  "step": 256
1545
  },
1546
  {
1547
  "epoch": 1.37,
1548
  "learning_rate": 1.1912161528859308e-05,
1549
- "loss": 0.054,
1550
  "step": 257
1551
  },
1552
  {
1553
  "epoch": 1.37,
1554
  "learning_rate": 1.1855756922821675e-05,
1555
- "loss": 0.0723,
1556
  "step": 258
1557
  },
1558
  {
1559
  "epoch": 1.38,
1560
  "learning_rate": 1.179929110359745e-05,
1561
- "loss": 0.0602,
1562
  "step": 259
1563
  },
1564
  {
1565
  "epoch": 1.38,
1566
  "learning_rate": 1.1742765933743459e-05,
1567
- "loss": 0.0653,
1568
  "step": 260
1569
  },
1570
  {
1571
  "epoch": 1.39,
1572
  "learning_rate": 1.168618327777425e-05,
1573
- "loss": 0.0691,
1574
  "step": 261
1575
  },
1576
  {
1577
  "epoch": 1.39,
1578
  "learning_rate": 1.1629545002100573e-05,
1579
- "loss": 0.0721,
1580
  "step": 262
1581
  },
1582
  {
1583
  "epoch": 1.4,
1584
  "learning_rate": 1.157285297496783e-05,
1585
- "loss": 0.0771,
1586
  "step": 263
1587
  },
1588
  {
1589
  "epoch": 1.4,
1590
  "learning_rate": 1.1516109066394445e-05,
1591
- "loss": 0.0689,
1592
  "step": 264
1593
  },
1594
  {
1595
  "epoch": 1.41,
1596
  "learning_rate": 1.1459315148110179e-05,
1597
- "loss": 0.0757,
1598
  "step": 265
1599
  },
1600
  {
1601
  "epoch": 1.41,
1602
  "learning_rate": 1.1402473093494395e-05,
1603
- "loss": 0.0723,
1604
  "step": 266
1605
  },
1606
  {
1607
  "epoch": 1.42,
1608
  "learning_rate": 1.1345584777514253e-05,
1609
- "loss": 0.0551,
1610
  "step": 267
1611
  },
1612
  {
1613
  "epoch": 1.43,
1614
  "learning_rate": 1.1288652076662878e-05,
1615
- "loss": 0.0655,
1616
  "step": 268
1617
  },
1618
  {
1619
  "epoch": 1.43,
1620
  "learning_rate": 1.1231676868897452e-05,
1621
- "loss": 0.0574,
1622
  "step": 269
1623
  },
1624
  {
1625
  "epoch": 1.44,
1626
  "learning_rate": 1.1174661033577267e-05,
1627
- "loss": 0.0781,
1628
  "step": 270
1629
  },
1630
  {
1631
  "epoch": 1.44,
1632
  "learning_rate": 1.1117606451401745e-05,
1633
- "loss": 0.0754,
1634
  "step": 271
1635
  },
1636
  {
1637
  "epoch": 1.45,
1638
  "learning_rate": 1.1060515004348394e-05,
1639
- "loss": 0.0846,
1640
  "step": 272
1641
  },
1642
  {
1643
  "epoch": 1.45,
1644
  "learning_rate": 1.1003388575610724e-05,
1645
- "loss": 0.0585,
1646
  "step": 273
1647
  },
1648
  {
1649
  "epoch": 1.46,
1650
  "learning_rate": 1.0946229049536136e-05,
1651
- "loss": 0.0723,
1652
  "step": 274
1653
  },
1654
  {
1655
  "epoch": 1.46,
1656
  "learning_rate": 1.088903831156378e-05,
1657
- "loss": 0.0759,
1658
  "step": 275
1659
  },
1660
  {
1661
  "epoch": 1.47,
1662
  "learning_rate": 1.0831818248162328e-05,
1663
- "loss": 0.0707,
1664
  "step": 276
1665
  },
1666
  {
1667
  "epoch": 1.47,
1668
  "learning_rate": 1.0774570746767785e-05,
1669
- "loss": 0.0719,
1670
  "step": 277
1671
  },
1672
  {
1673
  "epoch": 1.48,
1674
  "learning_rate": 1.0717297695721199e-05,
1675
- "loss": 0.0757,
1676
  "step": 278
1677
  },
1678
  {
1679
  "epoch": 1.48,
1680
  "learning_rate": 1.0660000984206395e-05,
1681
- "loss": 0.06,
1682
  "step": 279
1683
  },
1684
  {
1685
  "epoch": 1.49,
1686
  "learning_rate": 1.0602682502187655e-05,
1687
- "loss": 0.0674,
1688
  "step": 280
1689
  },
1690
  {
1691
  "epoch": 1.49,
1692
  "learning_rate": 1.0545344140347365e-05,
1693
- "loss": 0.0655,
1694
  "step": 281
1695
  },
1696
  {
1697
  "epoch": 1.5,
1698
  "learning_rate": 1.0487987790023665e-05,
1699
- "loss": 0.077,
1700
  "step": 282
1701
  },
1702
  {
1703
  "epoch": 1.51,
1704
  "learning_rate": 1.0430615343148054e-05,
1705
- "loss": 0.0603,
1706
  "step": 283
1707
  },
1708
  {
1709
  "epoch": 1.51,
1710
  "learning_rate": 1.0373228692182982e-05,
1711
- "loss": 0.0659,
1712
  "step": 284
1713
  },
1714
  {
1715
  "epoch": 1.52,
1716
  "learning_rate": 1.031582973005943e-05,
1717
- "loss": 0.0744,
1718
  "step": 285
1719
  },
1720
  {
1721
  "epoch": 1.52,
1722
  "learning_rate": 1.0258420350114473e-05,
1723
- "loss": 0.0744,
1724
  "step": 286
1725
  },
1726
  {
1727
  "epoch": 1.53,
1728
  "learning_rate": 1.0201002446028815e-05,
1729
- "loss": 0.0677,
1730
  "step": 287
1731
  },
1732
  {
1733
  "epoch": 1.53,
1734
  "learning_rate": 1.0143577911764341e-05,
1735
- "loss": 0.0743,
1736
  "step": 288
1737
  },
1738
  {
1739
  "epoch": 1.54,
1740
  "learning_rate": 1.008614864150164e-05,
1741
- "loss": 0.0565,
1742
  "step": 289
1743
  },
1744
  {
1745
  "epoch": 1.54,
1746
  "learning_rate": 1.002871652957751e-05,
1747
- "loss": 0.0563,
1748
  "step": 290
1749
  },
1750
  {
1751
  "epoch": 1.55,
1752
  "learning_rate": 9.97128347042249e-06,
1753
- "loss": 0.0667,
1754
  "step": 291
1755
  },
1756
  {
1757
  "epoch": 1.55,
1758
  "learning_rate": 9.91385135849836e-06,
1759
- "loss": 0.0629,
1760
  "step": 292
1761
  },
1762
  {
1763
  "epoch": 1.56,
1764
  "learning_rate": 9.85642208823566e-06,
1765
- "loss": 0.0776,
1766
  "step": 293
1767
  },
1768
  {
1769
  "epoch": 1.56,
1770
  "learning_rate": 9.79899755397119e-06,
1771
- "loss": 0.0629,
1772
  "step": 294
1773
  },
1774
  {
1775
  "epoch": 1.57,
1776
  "learning_rate": 9.741579649885532e-06,
1777
- "loss": 0.0684,
1778
  "step": 295
1779
  },
1780
  {
1781
  "epoch": 1.57,
1782
  "learning_rate": 9.684170269940573e-06,
1783
- "loss": 0.0634,
1784
  "step": 296
1785
  },
1786
  {
1787
  "epoch": 1.58,
1788
  "learning_rate": 9.62677130781702e-06,
1789
- "loss": 0.0603,
1790
  "step": 297
1791
  },
1792
  {
1793
  "epoch": 1.59,
1794
  "learning_rate": 9.569384656851948e-06,
1795
- "loss": 0.0512,
1796
  "step": 298
1797
  },
1798
  {
1799
  "epoch": 1.59,
1800
  "learning_rate": 9.512012209976335e-06,
1801
- "loss": 0.0527,
1802
  "step": 299
1803
  },
1804
  {
1805
  "epoch": 1.6,
1806
  "learning_rate": 9.454655859652637e-06,
1807
- "loss": 0.0642,
1808
  "step": 300
1809
  },
1810
  {
1811
  "epoch": 1.6,
1812
  "learning_rate": 9.39731749781235e-06,
1813
- "loss": 0.0609,
1814
  "step": 301
1815
  },
1816
  {
1817
  "epoch": 1.61,
1818
  "learning_rate": 9.339999015793606e-06,
1819
- "loss": 0.0577,
1820
  "step": 302
1821
  },
1822
  {
1823
  "epoch": 1.61,
1824
  "learning_rate": 9.282702304278806e-06,
1825
- "loss": 0.0538,
1826
  "step": 303
1827
  },
1828
  {
1829
  "epoch": 1.62,
1830
  "learning_rate": 9.225429253232218e-06,
1831
- "loss": 0.0611,
1832
  "step": 304
1833
  },
1834
  {
1835
  "epoch": 1.62,
1836
  "learning_rate": 9.168181751837673e-06,
1837
- "loss": 0.0537,
1838
  "step": 305
1839
  },
1840
  {
1841
  "epoch": 1.63,
1842
  "learning_rate": 9.110961688436222e-06,
1843
- "loss": 0.0692,
1844
  "step": 306
1845
  },
1846
  {
1847
  "epoch": 1.63,
1848
  "learning_rate": 9.053770950463865e-06,
1849
- "loss": 0.064,
1850
  "step": 307
1851
  },
1852
  {
1853
  "epoch": 1.64,
1854
  "learning_rate": 8.996611424389283e-06,
1855
- "loss": 0.0687,
1856
  "step": 308
1857
  },
1858
  {
1859
  "epoch": 1.64,
1860
  "learning_rate": 8.93948499565161e-06,
1861
- "loss": 0.0533,
1862
  "step": 309
1863
  },
1864
  {
1865
  "epoch": 1.65,
1866
  "learning_rate": 8.882393548598258e-06,
1867
- "loss": 0.0582,
1868
  "step": 310
1869
  },
1870
  {
1871
  "epoch": 1.65,
1872
  "learning_rate": 8.825338966422735e-06,
1873
- "loss": 0.0639,
1874
  "step": 311
1875
  },
1876
  {
1877
  "epoch": 1.66,
1878
  "learning_rate": 8.768323131102552e-06,
1879
- "loss": 0.0689,
1880
  "step": 312
1881
  },
1882
  {
1883
  "epoch": 1.66,
1884
  "learning_rate": 8.711347923337122e-06,
1885
- "loss": 0.068,
1886
  "step": 313
1887
  },
1888
  {
1889
  "epoch": 1.67,
1890
  "learning_rate": 8.65441522248575e-06,
1891
- "loss": 0.0835,
1892
  "step": 314
1893
  },
1894
  {
1895
  "epoch": 1.68,
1896
  "learning_rate": 8.59752690650561e-06,
1897
- "loss": 0.0594,
1898
  "step": 315
1899
  },
1900
  {
1901
  "epoch": 1.68,
1902
  "learning_rate": 8.540684851889823e-06,
1903
- "loss": 0.0639,
1904
  "step": 316
1905
  },
1906
  {
1907
  "epoch": 1.69,
1908
  "learning_rate": 8.483890933605558e-06,
1909
- "loss": 0.0582,
1910
  "step": 317
1911
  },
1912
  {
1913
  "epoch": 1.69,
1914
  "learning_rate": 8.427147025032171e-06,
1915
- "loss": 0.0603,
1916
  "step": 318
1917
  },
1918
  {
1919
  "epoch": 1.7,
1920
  "learning_rate": 8.37045499789943e-06,
1921
- "loss": 0.0707,
1922
  "step": 319
1923
  },
1924
  {
1925
  "epoch": 1.7,
1926
  "learning_rate": 8.313816722225751e-06,
1927
- "loss": 0.0605,
1928
  "step": 320
1929
  },
1930
  {
1931
  "epoch": 1.71,
1932
  "learning_rate": 8.257234066256543e-06,
1933
- "loss": 0.0531,
1934
  "step": 321
1935
  },
1936
  {
1937
  "epoch": 1.71,
1938
  "learning_rate": 8.200708896402557e-06,
1939
- "loss": 0.0575,
1940
  "step": 322
1941
  },
1942
  {
1943
  "epoch": 1.72,
1944
  "learning_rate": 8.144243077178329e-06,
1945
- "loss": 0.0602,
1946
  "step": 323
1947
  },
1948
  {
1949
  "epoch": 1.72,
1950
  "learning_rate": 8.087838471140696e-06,
1951
- "loss": 0.0498,
1952
  "step": 324
1953
  },
1954
  {
1955
  "epoch": 1.73,
1956
  "learning_rate": 8.031496938827329e-06,
1957
- "loss": 0.0621,
1958
  "step": 325
1959
  },
1960
  {
1961
  "epoch": 1.73,
1962
  "learning_rate": 7.97522033869539e-06,
1963
- "loss": 0.0677,
1964
  "step": 326
1965
  },
1966
  {
1967
  "epoch": 1.74,
1968
  "learning_rate": 7.9190105270602e-06,
1969
- "loss": 0.0688,
1970
  "step": 327
1971
  },
1972
  {
1973
  "epoch": 1.74,
1974
  "learning_rate": 7.86286935803404e-06,
1975
- "loss": 0.0717,
1976
  "step": 328
1977
  },
1978
  {
1979
  "epoch": 1.75,
1980
  "learning_rate": 7.806798683464965e-06,
1981
- "loss": 0.0687,
1982
  "step": 329
1983
  },
1984
  {
1985
  "epoch": 1.76,
1986
  "learning_rate": 7.750800352875734e-06,
1987
- "loss": 0.064,
1988
  "step": 330
1989
  },
1990
  {
1991
  "epoch": 1.76,
1992
  "learning_rate": 7.694876213402801e-06,
1993
- "loss": 0.06,
1994
  "step": 331
1995
  },
1996
  {
1997
  "epoch": 1.77,
1998
  "learning_rate": 7.63902810973538e-06,
1999
- "loss": 0.0576,
2000
  "step": 332
2001
  },
2002
  {
2003
  "epoch": 1.77,
2004
  "learning_rate": 7.583257884054613e-06,
2005
- "loss": 0.0658,
2006
  "step": 333
2007
  },
2008
  {
2009
  "epoch": 1.78,
2010
  "learning_rate": 7.527567375972772e-06,
2011
- "loss": 0.0653,
2012
  "step": 334
2013
  },
2014
  {
2015
  "epoch": 1.78,
2016
  "learning_rate": 7.471958422472618e-06,
2017
- "loss": 0.0632,
2018
  "step": 335
2019
  },
2020
  {
2021
  "epoch": 1.79,
2022
  "learning_rate": 7.416432857846783e-06,
2023
- "loss": 0.0613,
2024
  "step": 336
2025
  },
2026
  {
2027
  "epoch": 1.79,
2028
  "learning_rate": 7.360992513637257e-06,
2029
- "loss": 0.0599,
2030
  "step": 337
2031
  },
2032
  {
2033
  "epoch": 1.8,
2034
  "learning_rate": 7.305639218575009e-06,
2035
- "loss": 0.0651,
2036
  "step": 338
2037
  },
2038
  {
2039
  "epoch": 1.8,
2040
  "learning_rate": 7.250374798519626e-06,
2041
- "loss": 0.0611,
2042
  "step": 339
2043
  },
2044
  {
2045
  "epoch": 1.81,
2046
  "learning_rate": 7.1952010763991146e-06,
2047
- "loss": 0.053,
2048
  "step": 340
2049
  },
2050
  {
2051
  "epoch": 1.81,
2052
  "learning_rate": 7.140119872149743e-06,
2053
- "loss": 0.0588,
2054
  "step": 341
2055
  },
2056
  {
2057
  "epoch": 1.82,
2058
  "learning_rate": 7.085133002656044e-06,
2059
- "loss": 0.0562,
2060
  "step": 342
2061
  },
2062
  {
2063
  "epoch": 1.82,
2064
  "learning_rate": 7.030242281690856e-06,
2065
- "loss": 0.0623,
2066
  "step": 343
2067
  },
2068
  {
2069
  "epoch": 1.83,
2070
  "learning_rate": 6.975449519855495e-06,
2071
- "loss": 0.0601,
2072
  "step": 344
2073
  },
2074
  {
2075
  "epoch": 1.84,
2076
  "learning_rate": 6.9207565245200614e-06,
2077
- "loss": 0.0616,
2078
  "step": 345
2079
  },
2080
  {
2081
  "epoch": 1.84,
2082
  "learning_rate": 6.866165099763782e-06,
2083
- "loss": 0.0661,
2084
  "step": 346
2085
  },
2086
  {
2087
  "epoch": 1.85,
2088
  "learning_rate": 6.811677046315535e-06,
2089
- "loss": 0.0706,
2090
  "step": 347
2091
  },
2092
  {
2093
  "epoch": 1.85,
2094
  "learning_rate": 6.757294161494426e-06,
2095
- "loss": 0.0614,
2096
  "step": 348
2097
  },
2098
  {
2099
  "epoch": 1.86,
2100
  "learning_rate": 6.70301823915052e-06,
2101
- "loss": 0.0553,
2102
  "step": 349
2103
  },
2104
  {
2105
  "epoch": 1.86,
2106
  "learning_rate": 6.64885106960567e-06,
2107
- "loss": 0.0673,
2108
  "step": 350
2109
  },
2110
  {
2111
  "epoch": 1.87,
2112
  "learning_rate": 6.594794439594443e-06,
2113
- "loss": 0.0595,
2114
  "step": 351
2115
  },
2116
  {
2117
  "epoch": 1.87,
2118
  "learning_rate": 6.54085013220521e-06,
2119
- "loss": 0.0546,
2120
  "step": 352
2121
  },
2122
  {
2123
  "epoch": 1.88,
2124
  "learning_rate": 6.48701992682131e-06,
2125
- "loss": 0.0546,
2126
  "step": 353
2127
  },
2128
  {
2129
  "epoch": 1.88,
2130
  "learning_rate": 6.4333055990623674e-06,
2131
- "loss": 0.0753,
2132
  "step": 354
2133
  },
2134
  {
2135
  "epoch": 1.89,
2136
  "learning_rate": 6.379708920725713e-06,
2137
- "loss": 0.0522,
2138
  "step": 355
2139
  },
2140
  {
2141
  "epoch": 1.89,
2142
  "learning_rate": 6.3262316597279506e-06,
2143
- "loss": 0.0685,
2144
  "step": 356
2145
  },
2146
  {
2147
  "epoch": 1.9,
2148
  "learning_rate": 6.272875580046633e-06,
2149
- "loss": 0.0483,
2150
  "step": 357
2151
  },
2152
  {
2153
  "epoch": 1.9,
2154
  "learning_rate": 6.219642441662077e-06,
2155
- "loss": 0.0604,
2156
  "step": 358
2157
  },
2158
  {
2159
  "epoch": 1.91,
2160
  "learning_rate": 6.1665340004993164e-06,
2161
- "loss": 0.0682,
2162
  "step": 359
2163
  },
2164
  {
2165
  "epoch": 1.91,
2166
  "learning_rate": 6.113552008370172e-06,
2167
- "loss": 0.0546,
2168
  "step": 360
2169
  },
2170
  {
2171
  "epoch": 1.92,
2172
  "learning_rate": 6.06069821291548e-06,
2173
- "loss": 0.0615,
2174
  "step": 361
2175
  },
2176
  {
2177
  "epoch": 1.93,
2178
  "learning_rate": 6.007974357547424e-06,
2179
- "loss": 0.0618,
2180
  "step": 362
2181
  },
2182
  {
2183
  "epoch": 1.93,
2184
  "learning_rate": 5.9553821813920545e-06,
2185
- "loss": 0.0591,
2186
  "step": 363
2187
  },
2188
  {
2189
  "epoch": 1.94,
2190
  "learning_rate": 5.902923419231902e-06,
2191
- "loss": 0.0597,
2192
  "step": 364
2193
  },
2194
  {
2195
  "epoch": 1.94,
2196
  "learning_rate": 5.850599801448757e-06,
2197
- "loss": 0.0622,
2198
  "step": 365
2199
  },
2200
  {
2201
  "epoch": 1.95,
2202
  "learning_rate": 5.798413053966607e-06,
2203
- "loss": 0.0597,
2204
  "step": 366
2205
  },
2206
  {
2207
  "epoch": 1.95,
2208
  "learning_rate": 5.74636489819469e-06,
2209
- "loss": 0.0751,
2210
  "step": 367
2211
  },
2212
  {
2213
  "epoch": 1.96,
2214
  "learning_rate": 5.6944570509707185e-06,
2215
- "loss": 0.06,
2216
  "step": 368
2217
  },
2218
  {
2219
  "epoch": 1.96,
2220
  "learning_rate": 5.6426912245042435e-06,
2221
- "loss": 0.068,
2222
  "step": 369
2223
  },
2224
  {
2225
  "epoch": 1.97,
2226
  "learning_rate": 5.5910691263201985e-06,
2227
- "loss": 0.0656,
2228
  "step": 370
2229
  },
2230
  {
2231
  "epoch": 1.97,
2232
  "learning_rate": 5.5395924592025384e-06,
2233
- "loss": 0.0593,
2234
  "step": 371
2235
  },
2236
  {
2237
  "epoch": 1.98,
2238
  "learning_rate": 5.488262921138098e-06,
2239
- "loss": 0.0603,
2240
  "step": 372
2241
  },
2242
  {
2243
  "epoch": 1.98,
2244
  "learning_rate": 5.437082205260593e-06,
2245
- "loss": 0.0467,
2246
  "step": 373
2247
  },
2248
  {
2249
  "epoch": 1.99,
2250
  "learning_rate": 5.3860519997947295e-06,
2251
- "loss": 0.0599,
2252
  "step": 374
2253
  },
2254
  {
2255
  "epoch": 1.99,
2256
  "learning_rate": 5.335173988000566e-06,
2257
- "loss": 0.0607,
2258
  "step": 375
2259
  },
2260
  {
2261
  "epoch": 2.0,
2262
  "learning_rate": 5.284449848117954e-06,
2263
- "loss": 0.0577,
2264
- "step": 376
2265
- },
2266
- {
2267
- "epoch": 2.01,
2268
- "learning_rate": 5.233881253311197e-06,
2269
- "loss": 0.0506,
2270
- "step": 377
2271
- },
2272
- {
2273
- "epoch": 2.01,
2274
- "learning_rate": 5.183469871613858e-06,
2275
- "loss": 0.0447,
2276
- "step": 378
2277
- },
2278
- {
2279
- "epoch": 2.02,
2280
- "learning_rate": 5.133217365873736e-06,
2281
- "loss": 0.0408,
2282
- "step": 379
2283
- },
2284
- {
2285
- "epoch": 2.02,
2286
- "learning_rate": 5.083125393698015e-06,
2287
- "loss": 0.0478,
2288
- "step": 380
2289
- },
2290
- {
2291
- "epoch": 2.03,
2292
- "learning_rate": 5.0331956073985885e-06,
2293
- "loss": 0.0379,
2294
- "step": 381
2295
- },
2296
- {
2297
- "epoch": 2.03,
2298
- "learning_rate": 4.98342965393757e-06,
2299
- "loss": 0.0392,
2300
- "step": 382
2301
- },
2302
- {
2303
- "epoch": 2.04,
2304
- "learning_rate": 4.933829174872932e-06,
2305
- "loss": 0.0471,
2306
- "step": 383
2307
- },
2308
- {
2309
- "epoch": 2.04,
2310
- "learning_rate": 4.884395806304402e-06,
2311
- "loss": 0.0493,
2312
- "step": 384
2313
- },
2314
- {
2315
- "epoch": 2.05,
2316
- "learning_rate": 4.835131178819467e-06,
2317
- "loss": 0.0427,
2318
- "step": 385
2319
- },
2320
- {
2321
- "epoch": 2.05,
2322
- "learning_rate": 4.78603691743958e-06,
2323
- "loss": 0.0322,
2324
- "step": 386
2325
- },
2326
- {
2327
- "epoch": 2.06,
2328
- "learning_rate": 4.737114641566598e-06,
2329
- "loss": 0.0477,
2330
- "step": 387
2331
- },
2332
- {
2333
- "epoch": 2.06,
2334
- "learning_rate": 4.688365964929321e-06,
2335
- "loss": 0.0275,
2336
- "step": 388
2337
- },
2338
- {
2339
- "epoch": 2.07,
2340
- "learning_rate": 4.639792495530286e-06,
2341
- "loss": 0.0483,
2342
- "step": 389
2343
- },
2344
- {
2345
- "epoch": 2.07,
2346
- "learning_rate": 4.59139583559272e-06,
2347
- "loss": 0.0356,
2348
- "step": 390
2349
- },
2350
- {
2351
- "epoch": 2.08,
2352
- "learning_rate": 4.54317758150769e-06,
2353
- "loss": 0.0397,
2354
- "step": 391
2355
- },
2356
- {
2357
- "epoch": 2.09,
2358
- "learning_rate": 4.495139323781448e-06,
2359
- "loss": 0.0418,
2360
- "step": 392
2361
- },
2362
- {
2363
- "epoch": 2.09,
2364
- "learning_rate": 4.447282646982961e-06,
2365
- "loss": 0.0356,
2366
- "step": 393
2367
- },
2368
- {
2369
- "epoch": 2.1,
2370
- "learning_rate": 4.399609129691649e-06,
2371
- "loss": 0.0396,
2372
- "step": 394
2373
- },
2374
- {
2375
- "epoch": 2.1,
2376
- "learning_rate": 4.352120344445308e-06,
2377
- "loss": 0.0396,
2378
- "step": 395
2379
- },
2380
- {
2381
- "epoch": 2.11,
2382
- "learning_rate": 4.304817857688262e-06,
2383
- "loss": 0.0341,
2384
- "step": 396
2385
- },
2386
- {
2387
- "epoch": 2.11,
2388
- "learning_rate": 4.257703229719643e-06,
2389
- "loss": 0.0419,
2390
- "step": 397
2391
- },
2392
- {
2393
- "epoch": 2.12,
2394
- "learning_rate": 4.210778014641984e-06,
2395
- "loss": 0.0446,
2396
- "step": 398
2397
- },
2398
- {
2399
- "epoch": 2.12,
2400
- "learning_rate": 4.164043760309916e-06,
2401
- "loss": 0.042,
2402
- "step": 399
2403
- },
2404
- {
2405
- "epoch": 2.13,
2406
- "learning_rate": 4.1175020082791105e-06,
2407
- "loss": 0.0386,
2408
- "step": 400
2409
- },
2410
- {
2411
- "epoch": 2.13,
2412
- "learning_rate": 4.071154293755465e-06,
2413
- "loss": 0.0376,
2414
- "step": 401
2415
- },
2416
- {
2417
- "epoch": 2.14,
2418
- "learning_rate": 4.025002145544426e-06,
2419
- "loss": 0.0425,
2420
- "step": 402
2421
- },
2422
- {
2423
- "epoch": 2.14,
2424
- "learning_rate": 3.979047086000579e-06,
2425
- "loss": 0.0389,
2426
- "step": 403
2427
- },
2428
- {
2429
- "epoch": 2.15,
2430
- "learning_rate": 3.933290630977426e-06,
2431
- "loss": 0.0352,
2432
- "step": 404
2433
- },
2434
- {
2435
- "epoch": 2.15,
2436
- "learning_rate": 3.887734289777393e-06,
2437
- "loss": 0.0294,
2438
- "step": 405
2439
- },
2440
- {
2441
- "epoch": 2.16,
2442
- "learning_rate": 3.842379565102032e-06,
2443
- "loss": 0.046,
2444
- "step": 406
2445
- },
2446
- {
2447
- "epoch": 2.16,
2448
- "learning_rate": 3.797227953002466e-06,
2449
- "loss": 0.0474,
2450
- "step": 407
2451
- },
2452
- {
2453
- "epoch": 2.17,
2454
- "learning_rate": 3.7522809428300323e-06,
2455
- "loss": 0.04,
2456
- "step": 408
2457
- },
2458
- {
2459
- "epoch": 2.18,
2460
- "learning_rate": 3.707540017187157e-06,
2461
- "loss": 0.036,
2462
- "step": 409
2463
- },
2464
- {
2465
- "epoch": 2.18,
2466
- "learning_rate": 3.6630066518784625e-06,
2467
- "loss": 0.0417,
2468
- "step": 410
2469
- },
2470
- {
2471
- "epoch": 2.19,
2472
- "learning_rate": 3.6186823158620564e-06,
2473
- "loss": 0.0359,
2474
- "step": 411
2475
- },
2476
- {
2477
- "epoch": 2.19,
2478
- "learning_rate": 3.5745684712011196e-06,
2479
- "loss": 0.0388,
2480
- "step": 412
2481
- },
2482
- {
2483
- "epoch": 2.2,
2484
- "learning_rate": 3.5306665730156486e-06,
2485
- "loss": 0.0422,
2486
- "step": 413
2487
- },
2488
- {
2489
- "epoch": 2.2,
2490
- "learning_rate": 3.4869780694344523e-06,
2491
- "loss": 0.0422,
2492
- "step": 414
2493
- },
2494
- {
2495
- "epoch": 2.21,
2496
- "learning_rate": 3.4435044015474216e-06,
2497
- "loss": 0.0492,
2498
- "step": 415
2499
- },
2500
- {
2501
- "epoch": 2.21,
2502
- "learning_rate": 3.4002470033579582e-06,
2503
- "loss": 0.0328,
2504
- "step": 416
2505
- },
2506
- {
2507
- "epoch": 2.22,
2508
- "learning_rate": 3.357207301735688e-06,
2509
- "loss": 0.0351,
2510
- "step": 417
2511
- },
2512
- {
2513
- "epoch": 2.22,
2514
- "learning_rate": 3.3143867163693933e-06,
2515
- "loss": 0.0608,
2516
- "step": 418
2517
- },
2518
- {
2519
- "epoch": 2.23,
2520
- "learning_rate": 3.271786659720182e-06,
2521
- "loss": 0.0444,
2522
- "step": 419
2523
- },
2524
- {
2525
- "epoch": 2.23,
2526
- "learning_rate": 3.229408536974902e-06,
2527
- "loss": 0.0417,
2528
- "step": 420
2529
- },
2530
- {
2531
- "epoch": 2.24,
2532
- "learning_rate": 3.1872537459997833e-06,
2533
- "loss": 0.0542,
2534
- "step": 421
2535
- },
2536
- {
2537
- "epoch": 2.24,
2538
- "learning_rate": 3.1453236772943317e-06,
2539
- "loss": 0.0332,
2540
- "step": 422
2541
- },
2542
- {
2543
- "epoch": 2.25,
2544
- "learning_rate": 3.1036197139454604e-06,
2545
- "loss": 0.037,
2546
- "step": 423
2547
- },
2548
- {
2549
- "epoch": 2.26,
2550
- "learning_rate": 3.0621432315818846e-06,
2551
- "loss": 0.0366,
2552
- "step": 424
2553
- },
2554
- {
2555
- "epoch": 2.26,
2556
- "learning_rate": 3.0208955983287035e-06,
2557
- "loss": 0.0487,
2558
- "step": 425
2559
- },
2560
- {
2561
- "epoch": 2.27,
2562
- "learning_rate": 2.9798781747623282e-06,
2563
- "loss": 0.0393,
2564
- "step": 426
2565
- },
2566
- {
2567
- "epoch": 2.27,
2568
- "learning_rate": 2.9390923138655604e-06,
2569
- "loss": 0.0392,
2570
- "step": 427
2571
- },
2572
- {
2573
- "epoch": 2.28,
2574
- "learning_rate": 2.898539360982968e-06,
2575
- "loss": 0.0409,
2576
- "step": 428
2577
- },
2578
- {
2579
- "epoch": 2.28,
2580
- "learning_rate": 2.8582206537765355e-06,
2581
- "loss": 0.0409,
2582
- "step": 429
2583
- },
2584
- {
2585
- "epoch": 2.29,
2586
- "learning_rate": 2.81813752218151e-06,
2587
- "loss": 0.03,
2588
- "step": 430
2589
- },
2590
- {
2591
- "epoch": 2.29,
2592
- "learning_rate": 2.778291288362549e-06,
2593
- "loss": 0.0422,
2594
- "step": 431
2595
- },
2596
- {
2597
- "epoch": 2.3,
2598
- "learning_rate": 2.7386832666701003e-06,
2599
- "loss": 0.0391,
2600
- "step": 432
2601
- },
2602
- {
2603
- "epoch": 2.3,
2604
- "learning_rate": 2.6993147635970528e-06,
2605
- "loss": 0.058,
2606
- "step": 433
2607
- },
2608
- {
2609
- "epoch": 2.31,
2610
- "learning_rate": 2.6601870777356396e-06,
2611
- "loss": 0.0386,
2612
- "step": 434
2613
- },
2614
- {
2615
- "epoch": 2.31,
2616
- "learning_rate": 2.6213014997345997e-06,
2617
- "loss": 0.0403,
2618
- "step": 435
2619
- },
2620
- {
2621
- "epoch": 2.32,
2622
- "learning_rate": 2.5826593122566112e-06,
2623
- "loss": 0.0449,
2624
- "step": 436
2625
- },
2626
- {
2627
- "epoch": 2.32,
2628
- "learning_rate": 2.5442617899359732e-06,
2629
- "loss": 0.036,
2630
- "step": 437
2631
- },
2632
- {
2633
- "epoch": 2.33,
2634
- "learning_rate": 2.506110199336581e-06,
2635
- "loss": 0.038,
2636
- "step": 438
2637
- },
2638
- {
2639
- "epoch": 2.34,
2640
- "learning_rate": 2.4682057989101115e-06,
2641
- "loss": 0.0503,
2642
- "step": 439
2643
- },
2644
- {
2645
- "epoch": 2.34,
2646
- "learning_rate": 2.4305498389545566e-06,
2647
- "loss": 0.0294,
2648
- "step": 440
2649
- },
2650
- {
2651
- "epoch": 2.35,
2652
- "learning_rate": 2.3931435615729483e-06,
2653
- "loss": 0.037,
2654
- "step": 441
2655
- },
2656
- {
2657
- "epoch": 2.35,
2658
- "learning_rate": 2.355988200632391e-06,
2659
- "loss": 0.0335,
2660
- "step": 442
2661
- },
2662
- {
2663
- "epoch": 2.36,
2664
- "learning_rate": 2.319084981723386e-06,
2665
- "loss": 0.0334,
2666
- "step": 443
2667
- },
2668
- {
2669
- "epoch": 2.36,
2670
- "learning_rate": 2.2824351221193796e-06,
2671
- "loss": 0.038,
2672
- "step": 444
2673
- },
2674
- {
2675
- "epoch": 2.37,
2676
- "learning_rate": 2.246039830736616e-06,
2677
- "loss": 0.04,
2678
- "step": 445
2679
- },
2680
- {
2681
- "epoch": 2.37,
2682
- "learning_rate": 2.209900308094265e-06,
2683
- "loss": 0.0488,
2684
- "step": 446
2685
- },
2686
- {
2687
- "epoch": 2.38,
2688
- "learning_rate": 2.174017746274828e-06,
2689
- "loss": 0.0369,
2690
- "step": 447
2691
- },
2692
- {
2693
- "epoch": 2.38,
2694
- "learning_rate": 2.1383933288847967e-06,
2695
- "loss": 0.0404,
2696
- "step": 448
2697
- },
2698
- {
2699
- "epoch": 2.39,
2700
- "learning_rate": 2.1030282310156282e-06,
2701
- "loss": 0.0475,
2702
- "step": 449
2703
- },
2704
- {
2705
- "epoch": 2.39,
2706
- "learning_rate": 2.067923619204989e-06,
2707
- "loss": 0.0383,
2708
- "step": 450
2709
- },
2710
- {
2711
- "epoch": 2.4,
2712
- "learning_rate": 2.033080651398248e-06,
2713
- "loss": 0.0302,
2714
- "step": 451
2715
- },
2716
- {
2717
- "epoch": 2.4,
2718
- "learning_rate": 1.9985004769103157e-06,
2719
- "loss": 0.0369,
2720
- "step": 452
2721
- },
2722
- {
2723
- "epoch": 2.41,
2724
- "learning_rate": 1.9641842363877096e-06,
2725
- "loss": 0.0426,
2726
- "step": 453
2727
- },
2728
- {
2729
- "epoch": 2.41,
2730
- "learning_rate": 1.930133061770936e-06,
2731
- "loss": 0.036,
2732
- "step": 454
2733
- },
2734
- {
2735
- "epoch": 2.42,
2736
- "learning_rate": 1.8963480762571563e-06,
2737
- "loss": 0.0308,
2738
- "step": 455
2739
- },
2740
- {
2741
- "epoch": 2.43,
2742
- "learning_rate": 1.8628303942631332e-06,
2743
- "loss": 0.0483,
2744
- "step": 456
2745
- },
2746
- {
2747
- "epoch": 2.43,
2748
- "learning_rate": 1.8295811213884729e-06,
2749
- "loss": 0.0416,
2750
- "step": 457
2751
- },
2752
- {
2753
- "epoch": 2.44,
2754
- "learning_rate": 1.7966013543791528e-06,
2755
- "loss": 0.047,
2756
- "step": 458
2757
- },
2758
- {
2759
- "epoch": 2.44,
2760
- "learning_rate": 1.7638921810913524e-06,
2761
- "loss": 0.0348,
2762
- "step": 459
2763
- },
2764
- {
2765
- "epoch": 2.45,
2766
- "learning_rate": 1.73145468045556e-06,
2767
  "loss": 0.052,
2768
- "step": 460
2769
- },
2770
- {
2771
- "epoch": 2.45,
2772
- "learning_rate": 1.6992899224409965e-06,
2773
- "loss": 0.0423,
2774
- "step": 461
2775
- },
2776
- {
2777
- "epoch": 2.46,
2778
- "learning_rate": 1.667398968020303e-06,
2779
- "loss": 0.0534,
2780
- "step": 462
2781
- },
2782
- {
2783
- "epoch": 2.46,
2784
- "learning_rate": 1.6357828691345602e-06,
2785
- "loss": 0.0544,
2786
- "step": 463
2787
- },
2788
- {
2789
- "epoch": 2.47,
2790
- "learning_rate": 1.6044426686585912e-06,
2791
- "loss": 0.0401,
2792
- "step": 464
2793
- },
2794
- {
2795
- "epoch": 2.47,
2796
- "learning_rate": 1.5733794003665392e-06,
2797
- "loss": 0.0529,
2798
- "step": 465
2799
- },
2800
- {
2801
- "epoch": 2.48,
2802
- "learning_rate": 1.5425940888978007e-06,
2803
- "loss": 0.0445,
2804
- "step": 466
2805
- },
2806
- {
2807
- "epoch": 2.48,
2808
- "learning_rate": 1.5120877497231968e-06,
2809
- "loss": 0.0397,
2810
- "step": 467
2811
- },
2812
- {
2813
- "epoch": 2.49,
2814
- "learning_rate": 1.4818613891114975e-06,
2815
- "loss": 0.0441,
2816
- "step": 468
2817
- },
2818
- {
2819
- "epoch": 2.49,
2820
- "learning_rate": 1.4519160040962188e-06,
2821
- "loss": 0.0448,
2822
- "step": 469
2823
- },
2824
- {
2825
- "epoch": 2.5,
2826
- "learning_rate": 1.4222525824427414e-06,
2827
- "loss": 0.0397,
2828
- "step": 470
2829
- },
2830
- {
2831
- "epoch": 2.51,
2832
- "learning_rate": 1.392872102615722e-06,
2833
- "loss": 0.0509,
2834
- "step": 471
2835
- },
2836
- {
2837
- "epoch": 2.51,
2838
- "learning_rate": 1.3637755337468262e-06,
2839
- "loss": 0.0457,
2840
- "step": 472
2841
- },
2842
- {
2843
- "epoch": 2.52,
2844
- "learning_rate": 1.3349638356027539e-06,
2845
- "loss": 0.0476,
2846
- "step": 473
2847
- },
2848
- {
2849
- "epoch": 2.52,
2850
- "learning_rate": 1.3064379585535847e-06,
2851
- "loss": 0.0296,
2852
- "step": 474
2853
- },
2854
- {
2855
- "epoch": 2.53,
2856
- "learning_rate": 1.2781988435414284e-06,
2857
- "loss": 0.0304,
2858
- "step": 475
2859
- },
2860
- {
2861
- "epoch": 2.53,
2862
- "learning_rate": 1.2502474220493888e-06,
2863
- "loss": 0.0309,
2864
- "step": 476
2865
- },
2866
- {
2867
- "epoch": 2.54,
2868
- "learning_rate": 1.2225846160708332e-06,
2869
- "loss": 0.0425,
2870
- "step": 477
2871
- },
2872
- {
2873
- "epoch": 2.54,
2874
- "learning_rate": 1.195211338078992e-06,
2875
- "loss": 0.0392,
2876
- "step": 478
2877
- },
2878
- {
2879
- "epoch": 2.55,
2880
- "learning_rate": 1.1681284909968393e-06,
2881
- "loss": 0.0414,
2882
- "step": 479
2883
- },
2884
- {
2885
- "epoch": 2.55,
2886
- "learning_rate": 1.1413369681673348e-06,
2887
- "loss": 0.0421,
2888
- "step": 480
2889
- },
2890
- {
2891
- "epoch": 2.56,
2892
- "learning_rate": 1.114837653323939e-06,
2893
- "loss": 0.0382,
2894
- "step": 481
2895
- },
2896
- {
2897
- "epoch": 2.56,
2898
- "learning_rate": 1.0886314205614612e-06,
2899
- "loss": 0.0442,
2900
- "step": 482
2901
- },
2902
- {
2903
- "epoch": 2.57,
2904
- "learning_rate": 1.062719134307244e-06,
2905
- "loss": 0.0404,
2906
- "step": 483
2907
- },
2908
- {
2909
- "epoch": 2.57,
2910
- "learning_rate": 1.0371016492926322e-06,
2911
- "loss": 0.0427,
2912
- "step": 484
2913
- },
2914
- {
2915
- "epoch": 2.58,
2916
- "learning_rate": 1.0117798105247867e-06,
2917
- "loss": 0.0446,
2918
- "step": 485
2919
- },
2920
- {
2921
- "epoch": 2.59,
2922
- "learning_rate": 9.867544532588135e-07,
2923
- "loss": 0.0371,
2924
- "step": 486
2925
- },
2926
- {
2927
- "epoch": 2.59,
2928
- "learning_rate": 9.620264029702054e-07,
2929
- "loss": 0.0393,
2930
- "step": 487
2931
- },
2932
- {
2933
- "epoch": 2.6,
2934
- "learning_rate": 9.375964753276201e-07,
2935
- "loss": 0.0405,
2936
- "step": 488
2937
- },
2938
- {
2939
- "epoch": 2.6,
2940
- "learning_rate": 9.1346547616597e-07,
2941
- "loss": 0.0469,
2942
- "step": 489
2943
- },
2944
- {
2945
- "epoch": 2.61,
2946
- "learning_rate": 8.896342014598458e-07,
2947
- "loss": 0.0479,
2948
- "step": 490
2949
- },
2950
- {
2951
- "epoch": 2.61,
2952
- "learning_rate": 8.661034372972532e-07,
2953
- "loss": 0.0499,
2954
- "step": 491
2955
- },
2956
- {
2957
- "epoch": 2.62,
2958
- "learning_rate": 8.428739598536995e-07,
2959
- "loss": 0.0389,
2960
- "step": 492
2961
- },
2962
- {
2963
- "epoch": 2.62,
2964
- "learning_rate": 8.199465353665637e-07,
2965
- "loss": 0.0333,
2966
- "step": 493
2967
- },
2968
- {
2969
- "epoch": 2.63,
2970
- "learning_rate": 7.973219201098537e-07,
2971
- "loss": 0.0455,
2972
- "step": 494
2973
- },
2974
- {
2975
- "epoch": 2.63,
2976
- "learning_rate": 7.750008603692372e-07,
2977
- "loss": 0.0394,
2978
- "step": 495
2979
- },
2980
- {
2981
- "epoch": 2.64,
2982
- "learning_rate": 7.52984092417427e-07,
2983
- "loss": 0.0344,
2984
- "step": 496
2985
- },
2986
- {
2987
- "epoch": 2.64,
2988
- "learning_rate": 7.312723424899115e-07,
2989
- "loss": 0.053,
2990
- "step": 497
2991
- },
2992
- {
2993
- "epoch": 2.65,
2994
- "learning_rate": 7.098663267609818e-07,
2995
- "loss": 0.0356,
2996
- "step": 498
2997
- },
2998
- {
2999
- "epoch": 2.65,
3000
- "learning_rate": 6.887667513201135e-07,
3001
- "loss": 0.0396,
3002
- "step": 499
3003
- },
3004
- {
3005
- "epoch": 2.66,
3006
- "learning_rate": 6.679743121486759e-07,
3007
- "loss": 0.0342,
3008
- "step": 500
3009
- },
3010
- {
3011
- "epoch": 2.66,
3012
- "learning_rate": 6.474896950969845e-07,
3013
- "loss": 0.0365,
3014
- "step": 501
3015
- },
3016
- {
3017
- "epoch": 2.67,
3018
- "learning_rate": 6.273135758616567e-07,
3019
- "loss": 0.0413,
3020
- "step": 502
3021
- },
3022
- {
3023
- "epoch": 2.68,
3024
- "learning_rate": 6.074466199633411e-07,
3025
- "loss": 0.0353,
3026
- "step": 503
3027
- },
3028
- {
3029
- "epoch": 2.68,
3030
- "learning_rate": 5.87889482724765e-07,
3031
- "loss": 0.0384,
3032
- "step": 504
3033
- },
3034
- {
3035
- "epoch": 2.69,
3036
- "learning_rate": 5.686428092491014e-07,
3037
- "loss": 0.0402,
3038
- "step": 505
3039
- },
3040
- {
3041
- "epoch": 2.69,
3042
- "learning_rate": 5.497072343987131e-07,
3043
- "loss": 0.0457,
3044
- "step": 506
3045
- },
3046
- {
3047
- "epoch": 2.7,
3048
- "learning_rate": 5.310833827741912e-07,
3049
- "loss": 0.0324,
3050
- "step": 507
3051
- },
3052
- {
3053
- "epoch": 2.7,
3054
- "learning_rate": 5.127718686937644e-07,
3055
- "loss": 0.0424,
3056
- "step": 508
3057
- },
3058
- {
3059
- "epoch": 2.71,
3060
- "learning_rate": 4.9477329617303e-07,
3061
- "loss": 0.0326,
3062
- "step": 509
3063
- },
3064
- {
3065
- "epoch": 2.71,
3066
- "learning_rate": 4.770882589050351e-07,
3067
- "loss": 0.0358,
3068
- "step": 510
3069
- },
3070
- {
3071
- "epoch": 2.72,
3072
- "learning_rate": 4.5971734024068735e-07,
3073
- "loss": 0.0375,
3074
- "step": 511
3075
- },
3076
- {
3077
- "epoch": 2.72,
3078
- "learning_rate": 4.426611131695147e-07,
3079
- "loss": 0.0402,
3080
- "step": 512
3081
- },
3082
- {
3083
- "epoch": 2.73,
3084
- "learning_rate": 4.2592014030076734e-07,
3085
- "loss": 0.0382,
3086
- "step": 513
3087
- },
3088
- {
3089
- "epoch": 2.73,
3090
- "learning_rate": 4.0949497384485727e-07,
3091
- "loss": 0.0446,
3092
- "step": 514
3093
- },
3094
- {
3095
- "epoch": 2.74,
3096
- "learning_rate": 3.933861555951468e-07,
3097
- "loss": 0.0432,
3098
- "step": 515
3099
- },
3100
- {
3101
- "epoch": 2.74,
3102
- "learning_rate": 3.7759421691007213e-07,
3103
- "loss": 0.0382,
3104
- "step": 516
3105
- },
3106
- {
3107
- "epoch": 2.75,
3108
- "learning_rate": 3.6211967869561603e-07,
3109
- "loss": 0.049,
3110
- "step": 517
3111
- },
3112
- {
3113
- "epoch": 2.76,
3114
- "learning_rate": 3.4696305138813504e-07,
3115
- "loss": 0.0452,
3116
- "step": 518
3117
- },
3118
- {
3119
- "epoch": 2.76,
3120
- "learning_rate": 3.3212483493750946e-07,
3121
- "loss": 0.0382,
3122
- "step": 519
3123
- },
3124
- {
3125
- "epoch": 2.77,
3126
- "learning_rate": 3.1760551879066125e-07,
3127
- "loss": 0.0337,
3128
- "step": 520
3129
- },
3130
- {
3131
- "epoch": 2.77,
3132
- "learning_rate": 3.034055818754056e-07,
3133
- "loss": 0.0269,
3134
- "step": 521
3135
- },
3136
- {
3137
- "epoch": 2.78,
3138
- "learning_rate": 2.8952549258465356e-07,
3139
- "loss": 0.0404,
3140
- "step": 522
3141
- },
3142
- {
3143
- "epoch": 2.78,
3144
- "learning_rate": 2.759657087609624e-07,
3145
- "loss": 0.0344,
3146
- "step": 523
3147
- },
3148
- {
3149
- "epoch": 2.79,
3150
- "learning_rate": 2.6272667768143413e-07,
3151
- "loss": 0.0375,
3152
- "step": 524
3153
- },
3154
- {
3155
- "epoch": 2.79,
3156
- "learning_rate": 2.498088360429607e-07,
3157
- "loss": 0.0464,
3158
- "step": 525
3159
- },
3160
- {
3161
- "epoch": 2.8,
3162
- "learning_rate": 2.372126099478178e-07,
3163
- "loss": 0.0409,
3164
- "step": 526
3165
- },
3166
- {
3167
- "epoch": 2.8,
3168
- "learning_rate": 2.2493841488961387e-07,
3169
- "loss": 0.0319,
3170
- "step": 527
3171
- },
3172
- {
3173
- "epoch": 2.81,
3174
- "learning_rate": 2.12986655739581e-07,
3175
- "loss": 0.039,
3176
- "step": 528
3177
- },
3178
- {
3179
- "epoch": 2.81,
3180
- "learning_rate": 2.013577267332223e-07,
3181
- "loss": 0.0386,
3182
- "step": 529
3183
- },
3184
- {
3185
- "epoch": 2.82,
3186
- "learning_rate": 1.9005201145730568e-07,
3187
- "loss": 0.0355,
3188
- "step": 530
3189
- },
3190
- {
3191
- "epoch": 2.82,
3192
- "learning_rate": 1.7906988283721173e-07,
3193
- "loss": 0.0299,
3194
- "step": 531
3195
- },
3196
- {
3197
- "epoch": 2.83,
3198
- "learning_rate": 1.6841170312463684e-07,
3199
- "loss": 0.041,
3200
- "step": 532
3201
- },
3202
- {
3203
- "epoch": 2.84,
3204
- "learning_rate": 1.5807782388563509e-07,
3205
- "loss": 0.0355,
3206
- "step": 533
3207
- },
3208
- {
3209
- "epoch": 2.84,
3210
- "learning_rate": 1.4806858598903075e-07,
3211
- "loss": 0.0307,
3212
- "step": 534
3213
- },
3214
- {
3215
- "epoch": 2.85,
3216
- "learning_rate": 1.3838431959516952e-07,
3217
- "loss": 0.0478,
3218
- "step": 535
3219
- },
3220
- {
3221
- "epoch": 2.85,
3222
- "learning_rate": 1.2902534414502843e-07,
3223
- "loss": 0.0248,
3224
- "step": 536
3225
- },
3226
- {
3227
- "epoch": 2.86,
3228
- "learning_rate": 1.1999196834968085e-07,
3229
- "loss": 0.0314,
3230
- "step": 537
3231
- },
3232
- {
3233
- "epoch": 2.86,
3234
- "learning_rate": 1.1128449018011134e-07,
3235
- "loss": 0.0403,
3236
- "step": 538
3237
- },
3238
- {
3239
- "epoch": 2.87,
3240
- "learning_rate": 1.0290319685738793e-07,
3241
- "loss": 0.0344,
3242
- "step": 539
3243
- },
3244
- {
3245
- "epoch": 2.87,
3246
- "learning_rate": 9.484836484318971e-08,
3247
- "loss": 0.0341,
3248
- "step": 540
3249
- },
3250
- {
3251
- "epoch": 2.88,
3252
- "learning_rate": 8.712025983068196e-08,
3253
- "loss": 0.0358,
3254
- "step": 541
3255
- },
3256
- {
3257
- "epoch": 2.88,
3258
- "learning_rate": 7.97191367357597e-08,
3259
- "loss": 0.0414,
3260
- "step": 542
3261
- },
3262
- {
3263
- "epoch": 2.89,
3264
- "learning_rate": 7.264523968863458e-08,
3265
- "loss": 0.0339,
3266
- "step": 543
3267
- },
3268
- {
3269
- "epoch": 2.89,
3270
- "learning_rate": 6.589880202578003e-08,
3271
- "loss": 0.038,
3272
- "step": 544
3273
- },
3274
- {
3275
- "epoch": 2.9,
3276
- "learning_rate": 5.948004628224091e-08,
3277
- "loss": 0.0414,
3278
- "step": 545
3279
- },
3280
- {
3281
- "epoch": 2.9,
3282
- "learning_rate": 5.338918418428929e-08,
3283
- "loss": 0.0441,
3284
- "step": 546
3285
- },
3286
- {
3287
- "epoch": 2.91,
3288
- "learning_rate": 4.7626416642436724e-08,
3289
- "loss": 0.0348,
3290
- "step": 547
3291
- },
3292
- {
3293
- "epoch": 2.91,
3294
- "learning_rate": 4.2191933744815116e-08,
3295
- "loss": 0.0346,
3296
- "step": 548
3297
- },
3298
- {
3299
- "epoch": 2.92,
3300
- "learning_rate": 3.708591475090284e-08,
3301
- "loss": 0.0418,
3302
- "step": 549
3303
- },
3304
- {
3305
- "epoch": 2.93,
3306
- "learning_rate": 3.230852808561058e-08,
3307
- "loss": 0.0399,
3308
- "step": 550
3309
- },
3310
- {
3311
- "epoch": 2.93,
3312
- "learning_rate": 2.7859931333723557e-08,
3313
- "loss": 0.0279,
3314
- "step": 551
3315
- },
3316
- {
3317
- "epoch": 2.94,
3318
- "learning_rate": 2.3740271234712343e-08,
3319
- "loss": 0.0445,
3320
- "step": 552
3321
- },
3322
- {
3323
- "epoch": 2.94,
3324
- "learning_rate": 1.9949683677882302e-08,
3325
- "loss": 0.0381,
3326
- "step": 553
3327
- },
3328
- {
3329
- "epoch": 2.95,
3330
- "learning_rate": 1.6488293697898284e-08,
3331
- "loss": 0.0321,
3332
- "step": 554
3333
- },
3334
- {
3335
- "epoch": 2.95,
3336
- "learning_rate": 1.3356215470656797e-08,
3337
- "loss": 0.0417,
3338
- "step": 555
3339
- },
3340
- {
3341
- "epoch": 2.96,
3342
- "learning_rate": 1.0553552309521265e-08,
3343
- "loss": 0.0329,
3344
- "step": 556
3345
- },
3346
- {
3347
- "epoch": 2.96,
3348
- "learning_rate": 8.080396661913626e-09,
3349
- "loss": 0.0435,
3350
- "step": 557
3351
- },
3352
- {
3353
- "epoch": 2.97,
3354
- "learning_rate": 5.936830106263447e-09,
3355
- "loss": 0.0405,
3356
- "step": 558
3357
- },
3358
- {
3359
- "epoch": 2.97,
3360
- "learning_rate": 4.1229233493222945e-09,
3361
- "loss": 0.0302,
3362
- "step": 559
3363
- },
3364
- {
3365
- "epoch": 2.98,
3366
- "learning_rate": 2.6387362238233794e-09,
3367
- "loss": 0.0311,
3368
- "step": 560
3369
- },
3370
- {
3371
- "epoch": 2.98,
3372
- "learning_rate": 1.4843176865153575e-09,
3373
- "loss": 0.0425,
3374
- "step": 561
3375
- },
3376
- {
3377
- "epoch": 2.99,
3378
- "learning_rate": 6.597058165436209e-10,
3379
- "loss": 0.0497,
3380
- "step": 562
3381
- },
3382
- {
3383
- "epoch": 2.99,
3384
- "learning_rate": 1.6492781419574778e-10,
3385
- "loss": 0.0391,
3386
- "step": 563
3387
- },
3388
- {
3389
- "epoch": 3.0,
3390
- "learning_rate": 0.0,
3391
- "loss": 0.0382,
3392
- "step": 564
3393
- },
3394
- {
3395
- "epoch": 3.0,
3396
- "step": 564,
3397
- "total_flos": 30619220115456.0,
3398
- "train_loss": 0.07966609711342669,
3399
- "train_runtime": 1503.8031,
3400
- "train_samples_per_second": 47.926,
3401
- "train_steps_per_second": 0.375
3402
  }
3403
  ],
3404
  "max_steps": 564,
3405
  "num_train_epochs": 3,
3406
- "total_flos": 30619220115456.0,
3407
  "trial_name": null,
3408
  "trial_params": null
3409
  }
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "global_step": 376,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
 
10
  {
11
  "epoch": 0.01,
12
  "learning_rate": 1.1764705882352942e-06,
13
+ "loss": 1.3193,
14
  "step": 1
15
  },
16
  {
17
  "epoch": 0.01,
18
  "learning_rate": 2.3529411764705885e-06,
19
+ "loss": 1.2891,
20
  "step": 2
21
  },
22
  {
23
  "epoch": 0.02,
24
  "learning_rate": 3.529411764705883e-06,
25
+ "loss": 1.3105,
26
  "step": 3
27
  },
28
  {
29
  "epoch": 0.02,
30
  "learning_rate": 4.705882352941177e-06,
31
+ "loss": 1.2383,
32
  "step": 4
33
  },
34
  {
35
  "epoch": 0.03,
36
  "learning_rate": 5.882352941176471e-06,
37
+ "loss": 0.8359,
38
  "step": 5
39
  },
40
  {
41
  "epoch": 0.03,
42
  "learning_rate": 7.058823529411766e-06,
43
+ "loss": 0.49,
44
  "step": 6
45
  },
46
  {
47
  "epoch": 0.04,
48
  "learning_rate": 8.23529411764706e-06,
49
+ "loss": 0.1881,
50
  "step": 7
51
  },
52
  {
53
  "epoch": 0.04,
54
  "learning_rate": 9.411764705882354e-06,
55
+ "loss": 0.2035,
56
  "step": 8
57
  },
58
  {
59
  "epoch": 0.05,
60
  "learning_rate": 1.0588235294117648e-05,
61
+ "loss": 0.1893,
62
  "step": 9
63
  },
64
  {
65
  "epoch": 0.05,
66
  "learning_rate": 1.1764705882352942e-05,
67
+ "loss": 0.2448,
68
  "step": 10
69
  },
70
  {
71
  "epoch": 0.06,
72
  "learning_rate": 1.2941176470588238e-05,
73
+ "loss": 0.1973,
74
  "step": 11
75
  },
76
  {
77
  "epoch": 0.06,
78
  "learning_rate": 1.4117647058823532e-05,
79
+ "loss": 0.2133,
80
  "step": 12
81
  },
82
  {
83
  "epoch": 0.07,
84
  "learning_rate": 1.5294117647058822e-05,
85
+ "loss": 0.2087,
86
  "step": 13
87
  },
88
  {
89
  "epoch": 0.07,
90
  "learning_rate": 1.647058823529412e-05,
91
+ "loss": 0.2408,
92
  "step": 14
93
  },
94
  {
95
  "epoch": 0.08,
96
  "learning_rate": 1.7647058823529414e-05,
97
+ "loss": 0.1686,
98
  "step": 15
99
  },
100
  {
101
  "epoch": 0.09,
102
  "learning_rate": 1.8823529411764708e-05,
103
+ "loss": 0.1917,
104
  "step": 16
105
  },
106
  {
107
  "epoch": 0.09,
108
  "learning_rate": 2e-05,
109
+ "loss": 0.2241,
110
  "step": 17
111
  },
112
  {
113
  "epoch": 0.1,
114
  "learning_rate": 1.9999835072185805e-05,
115
+ "loss": 0.2195,
116
  "step": 18
117
  },
118
  {
119
  "epoch": 0.1,
120
  "learning_rate": 1.999934029418346e-05,
121
+ "loss": 0.1847,
122
  "step": 19
123
  },
124
  {
125
  "epoch": 0.11,
126
  "learning_rate": 1.9998515682313485e-05,
127
+ "loss": 0.1765,
128
  "step": 20
129
  },
130
  {
131
  "epoch": 0.11,
132
  "learning_rate": 1.999736126377618e-05,
133
+ "loss": 0.1572,
134
  "step": 21
135
  },
136
  {
137
  "epoch": 0.12,
138
  "learning_rate": 1.999587707665068e-05,
139
+ "loss": 0.1677,
140
  "step": 22
141
  },
142
  {
143
  "epoch": 0.12,
144
  "learning_rate": 1.999406316989374e-05,
145
+ "loss": 0.1906,
146
  "step": 23
147
  },
148
  {
149
  "epoch": 0.13,
150
  "learning_rate": 1.9991919603338088e-05,
151
+ "loss": 0.153,
152
  "step": 24
153
  },
154
  {
155
  "epoch": 0.13,
156
  "learning_rate": 1.998944644769048e-05,
157
+ "loss": 0.1473,
158
  "step": 25
159
  },
160
  {
161
  "epoch": 0.14,
162
  "learning_rate": 1.9986643784529346e-05,
163
+ "loss": 0.1345,
164
  "step": 26
165
  },
166
  {
167
  "epoch": 0.14,
168
  "learning_rate": 1.9983511706302102e-05,
169
+ "loss": 0.1476,
170
  "step": 27
171
  },
172
  {
173
  "epoch": 0.15,
174
  "learning_rate": 1.9980050316322118e-05,
175
+ "loss": 0.1219,
176
  "step": 28
177
  },
178
  {
179
  "epoch": 0.15,
180
  "learning_rate": 1.997625972876529e-05,
181
+ "loss": 0.1336,
182
  "step": 29
183
  },
184
  {
185
  "epoch": 0.16,
186
  "learning_rate": 1.997214006866628e-05,
187
+ "loss": 0.1133,
188
  "step": 30
189
  },
190
  {
191
  "epoch": 0.16,
192
  "learning_rate": 1.9967691471914392e-05,
193
+ "loss": 0.1424,
194
  "step": 31
195
  },
196
  {
197
  "epoch": 0.17,
198
  "learning_rate": 1.99629140852491e-05,
199
+ "loss": 0.123,
200
  "step": 32
201
  },
202
  {
203
  "epoch": 0.18,
204
  "learning_rate": 1.9957808066255187e-05,
205
+ "loss": 0.1199,
206
  "step": 33
207
  },
208
  {
209
  "epoch": 0.18,
210
  "learning_rate": 1.9952373583357566e-05,
211
+ "loss": 0.1308,
212
  "step": 34
213
  },
214
  {
215
  "epoch": 0.19,
216
  "learning_rate": 1.994661081581571e-05,
217
+ "loss": 0.1172,
218
  "step": 35
219
  },
220
  {
221
  "epoch": 0.19,
222
  "learning_rate": 1.9940519953717762e-05,
223
+ "loss": 0.1299,
224
  "step": 36
225
  },
226
  {
227
  "epoch": 0.2,
228
  "learning_rate": 1.993410119797422e-05,
229
+ "loss": 0.1358,
230
  "step": 37
231
  },
232
  {
233
  "epoch": 0.2,
234
  "learning_rate": 1.9927354760311365e-05,
235
+ "loss": 0.121,
236
  "step": 38
237
  },
238
  {
239
  "epoch": 0.21,
240
  "learning_rate": 1.992028086326424e-05,
241
+ "loss": 0.1273,
242
  "step": 39
243
  },
244
  {
245
  "epoch": 0.21,
246
  "learning_rate": 1.991287974016932e-05,
247
+ "loss": 0.1215,
248
  "step": 40
249
  },
250
  {
251
  "epoch": 0.22,
252
  "learning_rate": 1.9905151635156813e-05,
253
+ "loss": 0.1239,
254
  "step": 41
255
  },
256
  {
257
  "epoch": 0.22,
258
  "learning_rate": 1.9897096803142616e-05,
259
+ "loss": 0.1178,
260
  "step": 42
261
  },
262
  {
263
  "epoch": 0.23,
264
  "learning_rate": 1.988871550981989e-05,
265
+ "loss": 0.1135,
266
  "step": 43
267
  },
268
  {
269
  "epoch": 0.23,
270
  "learning_rate": 1.988000803165032e-05,
271
+ "loss": 0.1103,
272
  "step": 44
273
  },
274
  {
275
  "epoch": 0.24,
276
  "learning_rate": 1.9870974655854974e-05,
277
+ "loss": 0.124,
278
  "step": 45
279
  },
280
  {
281
  "epoch": 0.24,
282
  "learning_rate": 1.9861615680404833e-05,
283
+ "loss": 0.1031,
284
  "step": 46
285
  },
286
  {
287
  "epoch": 0.25,
288
  "learning_rate": 1.985193141401097e-05,
289
+ "loss": 0.1032,
290
  "step": 47
291
  },
292
  {
293
  "epoch": 0.26,
294
  "learning_rate": 1.9841922176114366e-05,
295
+ "loss": 0.1151,
296
  "step": 48
297
  },
298
  {
299
  "epoch": 0.26,
300
  "learning_rate": 1.9831588296875367e-05,
301
+ "loss": 0.1061,
302
  "step": 49
303
  },
304
  {
305
  "epoch": 0.27,
306
  "learning_rate": 1.982093011716279e-05,
307
+ "loss": 0.1019,
308
  "step": 50
309
  },
310
  {
311
  "epoch": 0.27,
312
  "learning_rate": 1.9809947988542696e-05,
313
+ "loss": 0.1004,
314
  "step": 51
315
  },
316
  {
317
  "epoch": 0.28,
318
  "learning_rate": 1.979864227326678e-05,
319
+ "loss": 0.0971,
320
  "step": 52
321
  },
322
  {
323
  "epoch": 0.28,
324
  "learning_rate": 1.9787013344260422e-05,
325
+ "loss": 0.1137,
326
  "step": 53
327
  },
328
  {
329
  "epoch": 0.29,
330
  "learning_rate": 1.9775061585110387e-05,
331
+ "loss": 0.1052,
332
  "step": 54
333
  },
334
  {
335
  "epoch": 0.29,
336
  "learning_rate": 1.976278739005218e-05,
337
+ "loss": 0.1034,
338
  "step": 55
339
  },
340
  {
341
  "epoch": 0.3,
342
  "learning_rate": 1.9750191163957042e-05,
343
+ "loss": 0.0911,
344
  "step": 56
345
  },
346
  {
347
  "epoch": 0.3,
348
  "learning_rate": 1.9737273322318565e-05,
349
+ "loss": 0.1107,
350
  "step": 57
351
  },
352
  {
353
  "epoch": 0.31,
354
  "learning_rate": 1.972403429123904e-05,
355
+ "loss": 0.1055,
356
  "step": 58
357
  },
358
  {
359
  "epoch": 0.31,
360
  "learning_rate": 1.971047450741535e-05,
361
+ "loss": 0.106,
362
  "step": 59
363
  },
364
  {
365
  "epoch": 0.32,
366
  "learning_rate": 1.9696594418124598e-05,
367
+ "loss": 0.0934,
368
  "step": 60
369
  },
370
  {
371
  "epoch": 0.32,
372
  "learning_rate": 1.9682394481209338e-05,
373
+ "loss": 0.0986,
374
  "step": 61
375
  },
376
  {
377
  "epoch": 0.33,
378
  "learning_rate": 1.966787516506249e-05,
379
+ "loss": 0.1112,
380
  "step": 62
381
  },
382
  {
383
  "epoch": 0.34,
384
  "learning_rate": 1.9653036948611864e-05,
385
+ "loss": 0.1075,
386
  "step": 63
387
  },
388
  {
389
  "epoch": 0.34,
390
  "learning_rate": 1.9637880321304387e-05,
391
+ "loss": 0.1089,
392
  "step": 64
393
  },
394
  {
395
  "epoch": 0.35,
396
  "learning_rate": 1.962240578308993e-05,
397
+ "loss": 0.0972,
398
  "step": 65
399
  },
400
  {
401
  "epoch": 0.35,
402
  "learning_rate": 1.9606613844404853e-05,
403
+ "loss": 0.0898,
404
  "step": 66
405
  },
406
  {
407
  "epoch": 0.36,
408
  "learning_rate": 1.9590505026155146e-05,
409
+ "loss": 0.088,
410
  "step": 67
411
  },
412
  {
413
  "epoch": 0.36,
414
  "learning_rate": 1.9574079859699236e-05,
415
+ "loss": 0.1041,
416
  "step": 68
417
  },
418
  {
419
  "epoch": 0.37,
420
  "learning_rate": 1.955733888683049e-05,
421
+ "loss": 0.1028,
422
  "step": 69
423
  },
424
  {
425
  "epoch": 0.37,
426
  "learning_rate": 1.9540282659759317e-05,
427
+ "loss": 0.0876,
428
  "step": 70
429
  },
430
  {
431
  "epoch": 0.38,
432
  "learning_rate": 1.9522911741094966e-05,
433
+ "loss": 0.088,
434
  "step": 71
435
  },
436
  {
437
  "epoch": 0.38,
438
  "learning_rate": 1.9505226703826973e-05,
439
+ "loss": 0.0905,
440
  "step": 72
441
  },
442
  {
443
  "epoch": 0.39,
444
  "learning_rate": 1.948722813130624e-05,
445
+ "loss": 0.0945,
446
  "step": 73
447
  },
448
  {
449
  "epoch": 0.39,
450
  "learning_rate": 1.9468916617225814e-05,
451
+ "loss": 0.0978,
452
  "step": 74
453
  },
454
  {
455
  "epoch": 0.4,
456
  "learning_rate": 1.9450292765601287e-05,
457
+ "loss": 0.1132,
458
  "step": 75
459
  },
460
  {
461
  "epoch": 0.4,
462
  "learning_rate": 1.94313571907509e-05,
463
+ "loss": 0.0826,
464
  "step": 76
465
  },
466
  {
467
  "epoch": 0.41,
468
  "learning_rate": 1.941211051727524e-05,
469
+ "loss": 0.1053,
470
  "step": 77
471
  },
472
  {
473
  "epoch": 0.41,
474
  "learning_rate": 1.939255338003666e-05,
475
+ "loss": 0.1049,
476
  "step": 78
477
  },
478
  {
479
  "epoch": 0.42,
480
  "learning_rate": 1.937268642413835e-05,
481
+ "loss": 0.1079,
482
  "step": 79
483
  },
484
  {
485
  "epoch": 0.43,
486
  "learning_rate": 1.9352510304903017e-05,
487
+ "loss": 0.1078,
488
  "step": 80
489
  },
490
  {
491
  "epoch": 0.43,
492
  "learning_rate": 1.9332025687851325e-05,
493
+ "loss": 0.0937,
494
  "step": 81
495
  },
496
  {
497
  "epoch": 0.44,
498
  "learning_rate": 1.931123324867989e-05,
499
+ "loss": 0.0822,
500
  "step": 82
501
  },
502
  {
503
  "epoch": 0.44,
504
  "learning_rate": 1.929013367323902e-05,
505
+ "loss": 0.1162,
506
  "step": 83
507
  },
508
  {
509
  "epoch": 0.45,
510
  "learning_rate": 1.926872765751009e-05,
511
+ "loss": 0.0896,
512
  "step": 84
513
  },
514
  {
515
  "epoch": 0.45,
516
  "learning_rate": 1.9247015907582574e-05,
517
+ "loss": 0.1021,
518
  "step": 85
519
  },
520
  {
521
  "epoch": 0.46,
522
  "learning_rate": 1.9224999139630766e-05,
523
+ "loss": 0.1036,
524
  "step": 86
525
  },
526
  {
527
  "epoch": 0.46,
528
  "learning_rate": 1.920267807989015e-05,
529
+ "loss": 0.0952,
530
  "step": 87
531
  },
532
  {
533
  "epoch": 0.47,
534
  "learning_rate": 1.918005346463344e-05,
535
+ "loss": 0.0869,
536
  "step": 88
537
  },
538
  {
539
  "epoch": 0.47,
540
  "learning_rate": 1.9157126040146307e-05,
541
+ "loss": 0.0923,
542
  "step": 89
543
  },
544
  {
545
  "epoch": 0.48,
546
  "learning_rate": 1.9133896562702746e-05,
547
+ "loss": 0.0983,
548
  "step": 90
549
  },
550
  {
551
  "epoch": 0.48,
552
  "learning_rate": 1.911036579854016e-05,
553
+ "loss": 0.1044,
554
  "step": 91
555
  },
556
  {
557
  "epoch": 0.49,
558
  "learning_rate": 1.9086534523834032e-05,
559
+ "loss": 0.0901,
560
  "step": 92
561
  },
562
  {
563
  "epoch": 0.49,
564
  "learning_rate": 1.906240352467238e-05,
565
+ "loss": 0.0774,
566
  "step": 93
567
  },
568
  {
569
  "epoch": 0.5,
570
  "learning_rate": 1.9037973597029796e-05,
571
+ "loss": 0.0863,
572
  "step": 94
573
  },
574
  {
575
  "epoch": 0.51,
576
  "learning_rate": 1.901324554674119e-05,
577
+ "loss": 0.0906,
578
  "step": 95
579
  },
580
  {
581
  "epoch": 0.51,
582
  "learning_rate": 1.8988220189475216e-05,
583
+ "loss": 0.11,
584
  "step": 96
585
  },
586
  {
587
  "epoch": 0.52,
588
  "learning_rate": 1.896289835070737e-05,
589
+ "loss": 0.1056,
590
  "step": 97
591
  },
592
  {
593
  "epoch": 0.52,
594
  "learning_rate": 1.893728086569276e-05,
595
+ "loss": 0.0897,
596
  "step": 98
597
  },
598
  {
599
  "epoch": 0.53,
600
  "learning_rate": 1.891136857943854e-05,
601
+ "loss": 0.0954,
602
  "step": 99
603
  },
604
  {
605
  "epoch": 0.53,
606
  "learning_rate": 1.8885162346676063e-05,
607
+ "loss": 0.095,
608
  "step": 100
609
  },
610
  {
611
  "epoch": 0.54,
612
  "learning_rate": 1.8858663031832665e-05,
613
+ "loss": 0.0786,
614
  "step": 101
615
  },
616
  {
617
  "epoch": 0.54,
618
  "learning_rate": 1.8831871509003164e-05,
619
+ "loss": 0.0933,
620
  "step": 102
621
  },
622
  {
623
  "epoch": 0.55,
624
  "learning_rate": 1.8804788661921012e-05,
625
+ "loss": 0.0833,
626
  "step": 103
627
  },
628
  {
629
  "epoch": 0.55,
630
  "learning_rate": 1.877741538392917e-05,
631
+ "loss": 0.0784,
632
  "step": 104
633
  },
634
  {
635
  "epoch": 0.56,
636
  "learning_rate": 1.8749752577950614e-05,
637
+ "loss": 0.0851,
638
  "step": 105
639
  },
640
  {
641
  "epoch": 0.56,
642
  "learning_rate": 1.8721801156458573e-05,
643
+ "loss": 0.0891,
644
  "step": 106
645
  },
646
  {
647
  "epoch": 0.57,
648
  "learning_rate": 1.869356204144642e-05,
649
+ "loss": 0.0812,
650
  "step": 107
651
  },
652
  {
653
  "epoch": 0.57,
654
  "learning_rate": 1.866503616439725e-05,
655
+ "loss": 0.1109,
656
  "step": 108
657
  },
658
  {
659
  "epoch": 0.58,
660
  "learning_rate": 1.8636224466253177e-05,
661
+ "loss": 0.0948,
662
  "step": 109
663
  },
664
  {
665
  "epoch": 0.59,
666
  "learning_rate": 1.860712789738428e-05,
667
+ "loss": 0.0933,
668
  "step": 110
669
  },
670
  {
671
  "epoch": 0.59,
672
  "learning_rate": 1.857774741755726e-05,
673
+ "loss": 0.0872,
674
  "step": 111
675
  },
676
  {
677
  "epoch": 0.6,
678
  "learning_rate": 1.854808399590378e-05,
679
+ "loss": 0.0995,
680
  "step": 112
681
  },
682
  {
683
  "epoch": 0.6,
684
  "learning_rate": 1.8518138610888505e-05,
685
+ "loss": 0.0862,
686
  "step": 113
687
  },
688
  {
689
  "epoch": 0.61,
690
  "learning_rate": 1.8487912250276805e-05,
691
+ "loss": 0.0716,
692
  "step": 114
693
  },
694
  {
695
  "epoch": 0.61,
696
  "learning_rate": 1.8457405911102202e-05,
697
+ "loss": 0.0977,
698
  "step": 115
699
  },
700
  {
701
  "epoch": 0.62,
702
  "learning_rate": 1.8426620599633464e-05,
703
+ "loss": 0.0782,
704
  "step": 116
705
  },
706
  {
707
  "epoch": 0.62,
708
  "learning_rate": 1.8395557331341413e-05,
709
+ "loss": 0.0891,
710
  "step": 117
711
  },
712
  {
713
  "epoch": 0.63,
714
  "learning_rate": 1.836421713086544e-05,
715
+ "loss": 0.096,
716
  "step": 118
717
  },
718
  {
719
  "epoch": 0.63,
720
  "learning_rate": 1.83326010319797e-05,
721
+ "loss": 0.0912,
722
  "step": 119
723
  },
724
  {
725
  "epoch": 0.64,
726
  "learning_rate": 1.830071007755901e-05,
727
+ "loss": 0.0807,
728
  "step": 120
729
  },
730
  {
731
  "epoch": 0.64,
732
  "learning_rate": 1.8268545319544443e-05,
733
+ "loss": 0.092,
734
  "step": 121
735
  },
736
  {
737
  "epoch": 0.65,
738
  "learning_rate": 1.823610781890865e-05,
739
+ "loss": 0.0931,
740
  "step": 122
741
  },
742
  {
743
  "epoch": 0.65,
744
  "learning_rate": 1.820339864562085e-05,
745
+ "loss": 0.0859,
746
  "step": 123
747
  },
748
  {
749
  "epoch": 0.66,
750
  "learning_rate": 1.817041887861153e-05,
751
+ "loss": 0.089,
752
  "step": 124
753
  },
754
  {
755
  "epoch": 0.66,
756
  "learning_rate": 1.8137169605736867e-05,
757
+ "loss": 0.0991,
758
  "step": 125
759
  },
760
  {
761
  "epoch": 0.67,
762
  "learning_rate": 1.8103651923742846e-05,
763
+ "loss": 0.0741,
764
  "step": 126
765
  },
766
  {
767
  "epoch": 0.68,
768
  "learning_rate": 1.8069866938229066e-05,
769
+ "loss": 0.087,
770
  "step": 127
771
  },
772
  {
773
  "epoch": 0.68,
774
  "learning_rate": 1.8035815763612293e-05,
775
+ "loss": 0.0969,
776
  "step": 128
777
  },
778
  {
779
  "epoch": 0.69,
780
  "learning_rate": 1.8001499523089683e-05,
781
+ "loss": 0.071,
782
  "step": 129
783
  },
784
  {
785
  "epoch": 0.69,
786
  "learning_rate": 1.7966919348601754e-05,
787
+ "loss": 0.0804,
788
  "step": 130
789
  },
790
  {
791
  "epoch": 0.7,
792
  "learning_rate": 1.7932076380795017e-05,
793
+ "loss": 0.0895,
794
  "step": 131
795
  },
796
  {
797
  "epoch": 0.7,
798
  "learning_rate": 1.7896971768984373e-05,
799
+ "loss": 0.085,
800
  "step": 132
801
  },
802
  {
803
  "epoch": 0.71,
804
  "learning_rate": 1.7861606671115207e-05,
805
+ "loss": 0.1048,
806
  "step": 133
807
  },
808
  {
809
  "epoch": 0.71,
810
  "learning_rate": 1.7825982253725175e-05,
811
+ "loss": 0.0858,
812
  "step": 134
813
  },
814
  {
815
  "epoch": 0.72,
816
  "learning_rate": 1.7790099691905736e-05,
817
+ "loss": 0.1055,
818
  "step": 135
819
  },
820
  {
821
  "epoch": 0.72,
822
  "learning_rate": 1.7753960169263387e-05,
823
+ "loss": 0.0835,
824
  "step": 136
825
  },
826
  {
827
  "epoch": 0.73,
828
  "learning_rate": 1.7717564877880623e-05,
829
+ "loss": 0.0967,
830
  "step": 137
831
  },
832
  {
833
  "epoch": 0.73,
834
  "learning_rate": 1.7680915018276613e-05,
835
+ "loss": 0.0972,
836
  "step": 138
837
  },
838
  {
839
  "epoch": 0.74,
840
  "learning_rate": 1.764401179936761e-05,
841
+ "loss": 0.0823,
842
  "step": 139
843
  },
844
  {
845
  "epoch": 0.74,
846
  "learning_rate": 1.7606856438427054e-05,
847
+ "loss": 0.0803,
848
  "step": 140
849
  },
850
  {
851
  "epoch": 0.75,
852
  "learning_rate": 1.7569450161045444e-05,
853
+ "loss": 0.0926,
854
  "step": 141
855
  },
856
  {
857
  "epoch": 0.76,
858
  "learning_rate": 1.7531794201089888e-05,
859
+ "loss": 0.11,
860
  "step": 142
861
  },
862
  {
863
  "epoch": 0.76,
864
  "learning_rate": 1.749388980066342e-05,
865
+ "loss": 0.0889,
866
  "step": 143
867
  },
868
  {
869
  "epoch": 0.77,
870
  "learning_rate": 1.745573821006403e-05,
871
+ "loss": 0.093,
872
  "step": 144
873
  },
874
  {
875
  "epoch": 0.77,
876
  "learning_rate": 1.7417340687743393e-05,
877
+ "loss": 0.0857,
878
  "step": 145
879
  },
880
  {
881
  "epoch": 0.78,
882
  "learning_rate": 1.7378698500265402e-05,
883
+ "loss": 0.0871,
884
  "step": 146
885
  },
886
  {
887
  "epoch": 0.78,
888
  "learning_rate": 1.7339812922264366e-05,
889
+ "loss": 0.0911,
890
  "step": 147
891
  },
892
  {
893
  "epoch": 0.79,
894
  "learning_rate": 1.730068523640295e-05,
895
+ "loss": 0.0938,
896
  "step": 148
897
  },
898
  {
899
  "epoch": 0.79,
900
  "learning_rate": 1.72613167333299e-05,
901
+ "loss": 0.0883,
902
  "step": 149
903
  },
904
  {
905
  "epoch": 0.8,
906
  "learning_rate": 1.7221708711637455e-05,
907
+ "loss": 0.0897,
908
  "step": 150
909
  },
910
  {
911
  "epoch": 0.8,
912
  "learning_rate": 1.718186247781849e-05,
913
+ "loss": 0.0814,
914
  "step": 151
915
  },
916
  {
917
  "epoch": 0.81,
918
  "learning_rate": 1.7141779346223465e-05,
919
+ "loss": 0.0793,
920
  "step": 152
921
  },
922
  {
923
  "epoch": 0.81,
924
  "learning_rate": 1.7101460639017034e-05,
925
+ "loss": 0.0717,
926
  "step": 153
927
  },
928
  {
929
  "epoch": 0.82,
930
  "learning_rate": 1.7060907686134445e-05,
931
+ "loss": 0.0847,
932
  "step": 154
933
  },
934
  {
935
  "epoch": 0.82,
936
  "learning_rate": 1.7020121825237672e-05,
937
+ "loss": 0.0798,
938
  "step": 155
939
  },
940
  {
941
  "epoch": 0.83,
942
  "learning_rate": 1.6979104401671296e-05,
943
+ "loss": 0.0865,
944
  "step": 156
945
  },
946
  {
947
  "epoch": 0.84,
948
  "learning_rate": 1.693785676841812e-05,
949
+ "loss": 0.0914,
950
  "step": 157
951
  },
952
  {
953
  "epoch": 0.84,
954
  "learning_rate": 1.6896380286054537e-05,
955
+ "loss": 0.0797,
956
  "step": 158
957
  },
958
  {
959
  "epoch": 0.85,
960
  "learning_rate": 1.6854676322705673e-05,
961
+ "loss": 0.0736,
962
  "step": 159
963
  },
964
  {
965
  "epoch": 0.85,
966
  "learning_rate": 1.6812746254000222e-05,
967
+ "loss": 0.0765,
968
  "step": 160
969
  },
970
  {
971
  "epoch": 0.86,
972
  "learning_rate": 1.67705914630251e-05,
973
+ "loss": 0.0843,
974
  "step": 161
975
  },
976
  {
977
  "epoch": 0.86,
978
  "learning_rate": 1.6728213340279822e-05,
979
+ "loss": 0.0772,
980
  "step": 162
981
  },
982
  {
983
  "epoch": 0.87,
984
  "learning_rate": 1.668561328363061e-05,
985
+ "loss": 0.0944,
986
  "step": 163
987
  },
988
  {
989
  "epoch": 0.87,
990
  "learning_rate": 1.6642792698264313e-05,
991
+ "loss": 0.0915,
992
  "step": 164
993
  },
994
  {
995
  "epoch": 0.88,
996
  "learning_rate": 1.6599752996642044e-05,
997
+ "loss": 0.0805,
998
  "step": 165
999
  },
1000
  {
1001
  "epoch": 0.88,
1002
  "learning_rate": 1.655649559845258e-05,
1003
+ "loss": 0.0925,
1004
  "step": 166
1005
  },
1006
  {
1007
  "epoch": 0.89,
1008
  "learning_rate": 1.651302193056555e-05,
1009
+ "loss": 0.0811,
1010
  "step": 167
1011
  },
1012
  {
1013
  "epoch": 0.89,
1014
  "learning_rate": 1.6469333426984357e-05,
1015
+ "loss": 0.0787,
1016
  "step": 168
1017
  },
1018
  {
1019
  "epoch": 0.9,
1020
  "learning_rate": 1.6425431528798883e-05,
1021
+ "loss": 0.0858,
1022
  "step": 169
1023
  },
1024
  {
1025
  "epoch": 0.9,
1026
  "learning_rate": 1.6381317684137946e-05,
1027
+ "loss": 0.0768,
1028
  "step": 170
1029
  },
1030
  {
1031
  "epoch": 0.91,
1032
  "learning_rate": 1.6336993348121543e-05,
1033
+ "loss": 0.0818,
1034
  "step": 171
1035
  },
1036
  {
1037
  "epoch": 0.91,
1038
  "learning_rate": 1.6292459982812845e-05,
1039
+ "loss": 0.0868,
1040
  "step": 172
1041
  },
1042
  {
1043
  "epoch": 0.92,
1044
  "learning_rate": 1.624771905716997e-05,
1045
+ "loss": 0.0828,
1046
  "step": 173
1047
  },
1048
  {
1049
  "epoch": 0.93,
1050
  "learning_rate": 1.620277204699754e-05,
1051
+ "loss": 0.0821,
1052
  "step": 174
1053
  },
1054
  {
1055
  "epoch": 0.93,
1056
  "learning_rate": 1.615762043489797e-05,
1057
+ "loss": 0.0858,
1058
  "step": 175
1059
  },
1060
  {
1061
  "epoch": 0.94,
1062
  "learning_rate": 1.611226571022261e-05,
1063
+ "loss": 0.0711,
1064
  "step": 176
1065
  },
1066
  {
1067
  "epoch": 0.94,
1068
  "learning_rate": 1.6066709369022576e-05,
1069
+ "loss": 0.0771,
1070
  "step": 177
1071
  },
1072
  {
1073
  "epoch": 0.95,
1074
  "learning_rate": 1.6020952913999423e-05,
1075
+ "loss": 0.0788,
1076
  "step": 178
1077
  },
1078
  {
1079
  "epoch": 0.95,
1080
  "learning_rate": 1.5974997854455575e-05,
1081
+ "loss": 0.0716,
1082
  "step": 179
1083
  },
1084
  {
1085
  "epoch": 0.96,
1086
  "learning_rate": 1.5928845706244537e-05,
1087
+ "loss": 0.0894,
1088
  "step": 180
1089
  },
1090
  {
1091
  "epoch": 0.96,
1092
  "learning_rate": 1.588249799172089e-05,
1093
+ "loss": 0.085,
1094
  "step": 181
1095
  },
1096
  {
1097
  "epoch": 0.97,
1098
  "learning_rate": 1.583595623969009e-05,
1099
+ "loss": 0.0832,
1100
  "step": 182
1101
  },
1102
  {
1103
  "epoch": 0.97,
1104
  "learning_rate": 1.5789221985358017e-05,
1105
+ "loss": 0.0787,
1106
  "step": 183
1107
  },
1108
  {
1109
  "epoch": 0.98,
1110
  "learning_rate": 1.574229677028036e-05,
1111
+ "loss": 0.0792,
1112
  "step": 184
1113
  },
1114
  {
1115
  "epoch": 0.98,
1116
  "learning_rate": 1.5695182142311743e-05,
1117
+ "loss": 0.0798,
1118
  "step": 185
1119
  },
1120
  {
1121
  "epoch": 0.99,
1122
  "learning_rate": 1.564787965555469e-05,
1123
+ "loss": 0.0978,
1124
  "step": 186
1125
  },
1126
  {
1127
  "epoch": 0.99,
1128
  "learning_rate": 1.560039087030836e-05,
1129
+ "loss": 0.0909,
1130
  "step": 187
1131
  },
1132
  {
1133
  "epoch": 1.0,
1134
  "learning_rate": 1.5552717353017045e-05,
1135
+ "loss": 0.0749,
1136
  "step": 188
1137
  },
1138
  {
1139
  "epoch": 1.01,
1140
  "learning_rate": 1.5504860676218557e-05,
1141
+ "loss": 0.0788,
1142
  "step": 189
1143
  },
1144
  {
1145
  "epoch": 1.01,
1146
  "learning_rate": 1.5456822418492312e-05,
1147
+ "loss": 0.07,
1148
  "step": 190
1149
  },
1150
  {
1151
  "epoch": 1.02,
1152
  "learning_rate": 1.540860416440728e-05,
1153
+ "loss": 0.073,
1154
  "step": 191
1155
  },
1156
  {
1157
  "epoch": 1.02,
1158
  "learning_rate": 1.5360207504469715e-05,
1159
+ "loss": 0.0621,
1160
  "step": 192
1161
  },
1162
  {
1163
  "epoch": 1.03,
1164
  "learning_rate": 1.5311634035070678e-05,
1165
+ "loss": 0.0738,
1166
  "step": 193
1167
  },
1168
  {
1169
  "epoch": 1.03,
1170
  "learning_rate": 1.5262885358433404e-05,
1171
+ "loss": 0.0698,
1172
  "step": 194
1173
  },
1174
  {
1175
  "epoch": 1.04,
1176
  "learning_rate": 1.5213963082560424e-05,
1177
+ "loss": 0.0666,
1178
  "step": 195
1179
  },
1180
  {
1181
  "epoch": 1.04,
1182
  "learning_rate": 1.5164868821180538e-05,
1183
+ "loss": 0.0663,
1184
  "step": 196
1185
  },
1186
  {
1187
  "epoch": 1.05,
1188
  "learning_rate": 1.5115604193695599e-05,
1189
+ "loss": 0.0686,
1190
  "step": 197
1191
  },
1192
  {
1193
  "epoch": 1.05,
1194
  "learning_rate": 1.5066170825127069e-05,
1195
+ "loss": 0.0612,
1196
  "step": 198
1197
  },
1198
  {
1199
  "epoch": 1.06,
1200
  "learning_rate": 1.5016570346062432e-05,
1201
+ "loss": 0.0657,
1202
  "step": 199
1203
  },
1204
  {
1205
  "epoch": 1.06,
1206
  "learning_rate": 1.496680439260141e-05,
1207
+ "loss": 0.0626,
1208
  "step": 200
1209
  },
1210
  {
1211
  "epoch": 1.07,
1212
  "learning_rate": 1.4916874606301989e-05,
1213
+ "loss": 0.068,
1214
  "step": 201
1215
  },
1216
  {
1217
  "epoch": 1.07,
1218
  "learning_rate": 1.4866782634126266e-05,
1219
+ "loss": 0.0637,
1220
  "step": 202
1221
  },
1222
  {
1223
  "epoch": 1.08,
1224
  "learning_rate": 1.4816530128386144e-05,
1225
+ "loss": 0.0698,
1226
  "step": 203
1227
  },
1228
  {
1229
  "epoch": 1.09,
1230
  "learning_rate": 1.4766118746688805e-05,
1231
+ "loss": 0.0714,
1232
  "step": 204
1233
  },
1234
  {
1235
  "epoch": 1.09,
1236
  "learning_rate": 1.471555015188205e-05,
1237
+ "loss": 0.061,
1238
  "step": 205
1239
  },
1240
  {
1241
  "epoch": 1.1,
1242
  "learning_rate": 1.4664826011999436e-05,
1243
+ "loss": 0.0645,
1244
  "step": 206
1245
  },
1246
  {
1247
  "epoch": 1.1,
1248
  "learning_rate": 1.4613948000205272e-05,
1249
+ "loss": 0.0714,
1250
  "step": 207
1251
  },
1252
  {
1253
  "epoch": 1.11,
1254
  "learning_rate": 1.4562917794739412e-05,
1255
+ "loss": 0.0583,
1256
  "step": 208
1257
  },
1258
  {
1259
  "epoch": 1.11,
1260
  "learning_rate": 1.4511737078861903e-05,
1261
+ "loss": 0.0609,
1262
  "step": 209
1263
  },
1264
  {
1265
  "epoch": 1.12,
1266
  "learning_rate": 1.4460407540797467e-05,
1267
+ "loss": 0.0695,
1268
  "step": 210
1269
  },
1270
  {
1271
  "epoch": 1.12,
1272
  "learning_rate": 1.4408930873679805e-05,
1273
+ "loss": 0.0824,
1274
  "step": 211
1275
  },
1276
  {
1277
  "epoch": 1.13,
1278
  "learning_rate": 1.4357308775495757e-05,
1279
+ "loss": 0.0541,
1280
  "step": 212
1281
  },
1282
  {
1283
  "epoch": 1.13,
1284
  "learning_rate": 1.4305542949029286e-05,
1285
+ "loss": 0.0706,
1286
  "step": 213
1287
  },
1288
  {
1289
  "epoch": 1.14,
1290
  "learning_rate": 1.4253635101805313e-05,
1291
+ "loss": 0.0812,
1292
  "step": 214
1293
  },
1294
  {
1295
  "epoch": 1.14,
1296
  "learning_rate": 1.4201586946033397e-05,
1297
+ "loss": 0.0605,
1298
  "step": 215
1299
  },
1300
  {
1301
  "epoch": 1.15,
1302
  "learning_rate": 1.4149400198551247e-05,
1303
+ "loss": 0.0674,
1304
  "step": 216
1305
  },
1306
  {
1307
  "epoch": 1.15,
1308
  "learning_rate": 1.4097076580768103e-05,
1309
+ "loss": 0.0709,
1310
  "step": 217
1311
  },
1312
  {
1313
  "epoch": 1.16,
1314
  "learning_rate": 1.4044617818607949e-05,
1315
+ "loss": 0.0727,
1316
  "step": 218
1317
  },
1318
  {
1319
  "epoch": 1.16,
1320
  "learning_rate": 1.3992025642452579e-05,
1321
+ "loss": 0.0734,
1322
  "step": 219
1323
  },
1324
  {
1325
  "epoch": 1.17,
1326
  "learning_rate": 1.3939301787084522e-05,
1327
+ "loss": 0.0593,
1328
  "step": 220
1329
  },
1330
  {
1331
  "epoch": 1.18,
1332
  "learning_rate": 1.3886447991629828e-05,
1333
+ "loss": 0.0762,
1334
  "step": 221
1335
  },
1336
  {
1337
  "epoch": 1.18,
1338
  "learning_rate": 1.3833465999500689e-05,
1339
+ "loss": 0.0668,
1340
  "step": 222
1341
  },
1342
  {
1343
  "epoch": 1.19,
1344
  "learning_rate": 1.3780357558337927e-05,
1345
+ "loss": 0.0658,
1346
  "step": 223
1347
  },
1348
  {
1349
  "epoch": 1.19,
1350
  "learning_rate": 1.372712441995337e-05,
1351
+ "loss": 0.0823,
1352
  "step": 224
1353
  },
1354
  {
1355
  "epoch": 1.2,
1356
  "learning_rate": 1.3673768340272053e-05,
1357
+ "loss": 0.066,
1358
  "step": 225
1359
  },
1360
  {
1361
  "epoch": 1.2,
1362
  "learning_rate": 1.362029107927429e-05,
1363
+ "loss": 0.0658,
1364
  "step": 226
1365
  },
1366
  {
1367
  "epoch": 1.21,
1368
  "learning_rate": 1.3566694400937635e-05,
1369
+ "loss": 0.0618,
1370
  "step": 227
1371
  },
1372
  {
1373
  "epoch": 1.21,
1374
  "learning_rate": 1.3512980073178693e-05,
1375
+ "loss": 0.0536,
1376
  "step": 228
1377
  },
1378
  {
1379
  "epoch": 1.22,
1380
  "learning_rate": 1.3459149867794794e-05,
1381
+ "loss": 0.0676,
1382
  "step": 229
1383
  },
1384
  {
1385
  "epoch": 1.22,
1386
  "learning_rate": 1.3405205560405558e-05,
1387
+ "loss": 0.0597,
1388
  "step": 230
1389
  },
1390
  {
1391
  "epoch": 1.23,
1392
  "learning_rate": 1.3351148930394333e-05,
1393
+ "loss": 0.0618,
1394
  "step": 231
1395
  },
1396
  {
1397
  "epoch": 1.23,
1398
  "learning_rate": 1.329698176084948e-05,
1399
+ "loss": 0.0642,
1400
  "step": 232
1401
  },
1402
  {
1403
  "epoch": 1.24,
1404
  "learning_rate": 1.3242705838505577e-05,
1405
+ "loss": 0.0508,
1406
  "step": 233
1407
  },
1408
  {
1409
  "epoch": 1.24,
1410
  "learning_rate": 1.3188322953684467e-05,
1411
+ "loss": 0.0688,
1412
  "step": 234
1413
  },
1414
  {
1415
  "epoch": 1.25,
1416
  "learning_rate": 1.3133834900236217e-05,
1417
+ "loss": 0.0589,
1418
  "step": 235
1419
  },
1420
  {
1421
  "epoch": 1.26,
1422
  "learning_rate": 1.3079243475479942e-05,
1423
+ "loss": 0.0569,
1424
  "step": 236
1425
  },
1426
  {
1427
  "epoch": 1.26,
1428
  "learning_rate": 1.3024550480144506e-05,
1429
+ "loss": 0.0825,
1430
  "step": 237
1431
  },
1432
  {
1433
  "epoch": 1.27,
1434
  "learning_rate": 1.296975771830915e-05,
1435
+ "loss": 0.0652,
1436
  "step": 238
1437
  },
1438
  {
1439
  "epoch": 1.27,
1440
  "learning_rate": 1.2914866997343957e-05,
1441
+ "loss": 0.0654,
1442
  "step": 239
1443
  },
1444
  {
1445
  "epoch": 1.28,
1446
  "learning_rate": 1.2859880127850258e-05,
1447
+ "loss": 0.0629,
1448
  "step": 240
1449
  },
1450
  {
1451
  "epoch": 1.28,
1452
  "learning_rate": 1.2804798923600888e-05,
1453
+ "loss": 0.0704,
1454
  "step": 241
1455
  },
1456
  {
1457
  "epoch": 1.29,
1458
  "learning_rate": 1.2749625201480375e-05,
1459
+ "loss": 0.0688,
1460
  "step": 242
1461
  },
1462
  {
1463
  "epoch": 1.29,
1464
  "learning_rate": 1.2694360781424994e-05,
1465
+ "loss": 0.0623,
1466
  "step": 243
1467
  },
1468
  {
1469
  "epoch": 1.3,
1470
  "learning_rate": 1.2639007486362745e-05,
1471
+ "loss": 0.0948,
1472
  "step": 244
1473
  },
1474
  {
1475
  "epoch": 1.3,
1476
  "learning_rate": 1.2583567142153224e-05,
1477
+ "loss": 0.0744,
1478
  "step": 245
1479
  },
1480
  {
1481
  "epoch": 1.31,
1482
  "learning_rate": 1.2528041577527384e-05,
1483
+ "loss": 0.0526,
1484
  "step": 246
1485
  },
1486
  {
1487
  "epoch": 1.31,
1488
  "learning_rate": 1.2472432624027228e-05,
1489
+ "loss": 0.0624,
1490
  "step": 247
1491
  },
1492
  {
1493
  "epoch": 1.32,
1494
  "learning_rate": 1.2416742115945391e-05,
1495
+ "loss": 0.0732,
1496
  "step": 248
1497
  },
1498
  {
1499
  "epoch": 1.32,
1500
  "learning_rate": 1.2360971890264621e-05,
1501
+ "loss": 0.0645,
1502
  "step": 249
1503
  },
1504
  {
1505
  "epoch": 1.33,
1506
  "learning_rate": 1.2305123786597202e-05,
1507
+ "loss": 0.0678,
1508
  "step": 250
1509
  },
1510
  {
1511
  "epoch": 1.34,
1512
  "learning_rate": 1.224919964712427e-05,
1513
+ "loss": 0.0802,
1514
  "step": 251
1515
  },
1516
  {
1517
  "epoch": 1.34,
1518
  "learning_rate": 1.219320131653504e-05,
1519
+ "loss": 0.0568,
1520
  "step": 252
1521
  },
1522
  {
1523
  "epoch": 1.35,
1524
  "learning_rate": 1.2137130641965964e-05,
1525
+ "loss": 0.0526,
1526
  "step": 253
1527
  },
1528
  {
1529
  "epoch": 1.35,
1530
  "learning_rate": 1.20809894729398e-05,
1531
+ "loss": 0.0632,
1532
  "step": 254
1533
  },
1534
  {
1535
  "epoch": 1.36,
1536
  "learning_rate": 1.2024779661304614e-05,
1537
+ "loss": 0.0667,
1538
  "step": 255
1539
  },
1540
  {
1541
  "epoch": 1.36,
1542
  "learning_rate": 1.1968503061172674e-05,
1543
+ "loss": 0.0727,
1544
  "step": 256
1545
  },
1546
  {
1547
  "epoch": 1.37,
1548
  "learning_rate": 1.1912161528859308e-05,
1549
+ "loss": 0.0641,
1550
  "step": 257
1551
  },
1552
  {
1553
  "epoch": 1.37,
1554
  "learning_rate": 1.1855756922821675e-05,
1555
+ "loss": 0.0522,
1556
  "step": 258
1557
  },
1558
  {
1559
  "epoch": 1.38,
1560
  "learning_rate": 1.179929110359745e-05,
1561
+ "loss": 0.0599,
1562
  "step": 259
1563
  },
1564
  {
1565
  "epoch": 1.38,
1566
  "learning_rate": 1.1742765933743459e-05,
1567
+ "loss": 0.0681,
1568
  "step": 260
1569
  },
1570
  {
1571
  "epoch": 1.39,
1572
  "learning_rate": 1.168618327777425e-05,
1573
+ "loss": 0.0576,
1574
  "step": 261
1575
  },
1576
  {
1577
  "epoch": 1.39,
1578
  "learning_rate": 1.1629545002100573e-05,
1579
+ "loss": 0.0647,
1580
  "step": 262
1581
  },
1582
  {
1583
  "epoch": 1.4,
1584
  "learning_rate": 1.157285297496783e-05,
1585
+ "loss": 0.0646,
1586
  "step": 263
1587
  },
1588
  {
1589
  "epoch": 1.4,
1590
  "learning_rate": 1.1516109066394445e-05,
1591
+ "loss": 0.0587,
1592
  "step": 264
1593
  },
1594
  {
1595
  "epoch": 1.41,
1596
  "learning_rate": 1.1459315148110179e-05,
1597
+ "loss": 0.064,
1598
  "step": 265
1599
  },
1600
  {
1601
  "epoch": 1.41,
1602
  "learning_rate": 1.1402473093494395e-05,
1603
+ "loss": 0.0677,
1604
  "step": 266
1605
  },
1606
  {
1607
  "epoch": 1.42,
1608
  "learning_rate": 1.1345584777514253e-05,
1609
+ "loss": 0.0599,
1610
  "step": 267
1611
  },
1612
  {
1613
  "epoch": 1.43,
1614
  "learning_rate": 1.1288652076662878e-05,
1615
+ "loss": 0.0674,
1616
  "step": 268
1617
  },
1618
  {
1619
  "epoch": 1.43,
1620
  "learning_rate": 1.1231676868897452e-05,
1621
+ "loss": 0.0716,
1622
  "step": 269
1623
  },
1624
  {
1625
  "epoch": 1.44,
1626
  "learning_rate": 1.1174661033577267e-05,
1627
+ "loss": 0.0797,
1628
  "step": 270
1629
  },
1630
  {
1631
  "epoch": 1.44,
1632
  "learning_rate": 1.1117606451401745e-05,
1633
+ "loss": 0.0577,
1634
  "step": 271
1635
  },
1636
  {
1637
  "epoch": 1.45,
1638
  "learning_rate": 1.1060515004348394e-05,
1639
+ "loss": 0.0643,
1640
  "step": 272
1641
  },
1642
  {
1643
  "epoch": 1.45,
1644
  "learning_rate": 1.1003388575610724e-05,
1645
+ "loss": 0.0735,
1646
  "step": 273
1647
  },
1648
  {
1649
  "epoch": 1.46,
1650
  "learning_rate": 1.0946229049536136e-05,
1651
+ "loss": 0.0619,
1652
  "step": 274
1653
  },
1654
  {
1655
  "epoch": 1.46,
1656
  "learning_rate": 1.088903831156378e-05,
1657
+ "loss": 0.0667,
1658
  "step": 275
1659
  },
1660
  {
1661
  "epoch": 1.47,
1662
  "learning_rate": 1.0831818248162328e-05,
1663
+ "loss": 0.0721,
1664
  "step": 276
1665
  },
1666
  {
1667
  "epoch": 1.47,
1668
  "learning_rate": 1.0774570746767785e-05,
1669
+ "loss": 0.0646,
1670
  "step": 277
1671
  },
1672
  {
1673
  "epoch": 1.48,
1674
  "learning_rate": 1.0717297695721199e-05,
1675
+ "loss": 0.0604,
1676
  "step": 278
1677
  },
1678
  {
1679
  "epoch": 1.48,
1680
  "learning_rate": 1.0660000984206395e-05,
1681
+ "loss": 0.0623,
1682
  "step": 279
1683
  },
1684
  {
1685
  "epoch": 1.49,
1686
  "learning_rate": 1.0602682502187655e-05,
1687
+ "loss": 0.0648,
1688
  "step": 280
1689
  },
1690
  {
1691
  "epoch": 1.49,
1692
  "learning_rate": 1.0545344140347365e-05,
1693
+ "loss": 0.0605,
1694
  "step": 281
1695
  },
1696
  {
1697
  "epoch": 1.5,
1698
  "learning_rate": 1.0487987790023665e-05,
1699
+ "loss": 0.0667,
1700
  "step": 282
1701
  },
1702
  {
1703
  "epoch": 1.51,
1704
  "learning_rate": 1.0430615343148054e-05,
1705
+ "loss": 0.0638,
1706
  "step": 283
1707
  },
1708
  {
1709
  "epoch": 1.51,
1710
  "learning_rate": 1.0373228692182982e-05,
1711
+ "loss": 0.0598,
1712
  "step": 284
1713
  },
1714
  {
1715
  "epoch": 1.52,
1716
  "learning_rate": 1.031582973005943e-05,
1717
+ "loss": 0.0805,
1718
  "step": 285
1719
  },
1720
  {
1721
  "epoch": 1.52,
1722
  "learning_rate": 1.0258420350114473e-05,
1723
+ "loss": 0.0682,
1724
  "step": 286
1725
  },
1726
  {
1727
  "epoch": 1.53,
1728
  "learning_rate": 1.0201002446028815e-05,
1729
+ "loss": 0.059,
1730
  "step": 287
1731
  },
1732
  {
1733
  "epoch": 1.53,
1734
  "learning_rate": 1.0143577911764341e-05,
1735
+ "loss": 0.0558,
1736
  "step": 288
1737
  },
1738
  {
1739
  "epoch": 1.54,
1740
  "learning_rate": 1.008614864150164e-05,
1741
+ "loss": 0.0685,
1742
  "step": 289
1743
  },
1744
  {
1745
  "epoch": 1.54,
1746
  "learning_rate": 1.002871652957751e-05,
1747
+ "loss": 0.0539,
1748
  "step": 290
1749
  },
1750
  {
1751
  "epoch": 1.55,
1752
  "learning_rate": 9.97128347042249e-06,
1753
+ "loss": 0.0588,
1754
  "step": 291
1755
  },
1756
  {
1757
  "epoch": 1.55,
1758
  "learning_rate": 9.91385135849836e-06,
1759
+ "loss": 0.0513,
1760
  "step": 292
1761
  },
1762
  {
1763
  "epoch": 1.56,
1764
  "learning_rate": 9.85642208823566e-06,
1765
+ "loss": 0.0616,
1766
  "step": 293
1767
  },
1768
  {
1769
  "epoch": 1.56,
1770
  "learning_rate": 9.79899755397119e-06,
1771
+ "loss": 0.0588,
1772
  "step": 294
1773
  },
1774
  {
1775
  "epoch": 1.57,
1776
  "learning_rate": 9.741579649885532e-06,
1777
+ "loss": 0.0645,
1778
  "step": 295
1779
  },
1780
  {
1781
  "epoch": 1.57,
1782
  "learning_rate": 9.684170269940573e-06,
1783
+ "loss": 0.0644,
1784
  "step": 296
1785
  },
1786
  {
1787
  "epoch": 1.58,
1788
  "learning_rate": 9.62677130781702e-06,
1789
+ "loss": 0.0638,
1790
  "step": 297
1791
  },
1792
  {
1793
  "epoch": 1.59,
1794
  "learning_rate": 9.569384656851948e-06,
1795
+ "loss": 0.085,
1796
  "step": 298
1797
  },
1798
  {
1799
  "epoch": 1.59,
1800
  "learning_rate": 9.512012209976335e-06,
1801
+ "loss": 0.0567,
1802
  "step": 299
1803
  },
1804
  {
1805
  "epoch": 1.6,
1806
  "learning_rate": 9.454655859652637e-06,
1807
+ "loss": 0.0639,
1808
  "step": 300
1809
  },
1810
  {
1811
  "epoch": 1.6,
1812
  "learning_rate": 9.39731749781235e-06,
1813
+ "loss": 0.073,
1814
  "step": 301
1815
  },
1816
  {
1817
  "epoch": 1.61,
1818
  "learning_rate": 9.339999015793606e-06,
1819
+ "loss": 0.0703,
1820
  "step": 302
1821
  },
1822
  {
1823
  "epoch": 1.61,
1824
  "learning_rate": 9.282702304278806e-06,
1825
+ "loss": 0.0711,
1826
  "step": 303
1827
  },
1828
  {
1829
  "epoch": 1.62,
1830
  "learning_rate": 9.225429253232218e-06,
1831
+ "loss": 0.0641,
1832
  "step": 304
1833
  },
1834
  {
1835
  "epoch": 1.62,
1836
  "learning_rate": 9.168181751837673e-06,
1837
+ "loss": 0.0591,
1838
  "step": 305
1839
  },
1840
  {
1841
  "epoch": 1.63,
1842
  "learning_rate": 9.110961688436222e-06,
1843
+ "loss": 0.0684,
1844
  "step": 306
1845
  },
1846
  {
1847
  "epoch": 1.63,
1848
  "learning_rate": 9.053770950463865e-06,
1849
+ "loss": 0.0775,
1850
  "step": 307
1851
  },
1852
  {
1853
  "epoch": 1.64,
1854
  "learning_rate": 8.996611424389283e-06,
1855
+ "loss": 0.0688,
1856
  "step": 308
1857
  },
1858
  {
1859
  "epoch": 1.64,
1860
  "learning_rate": 8.93948499565161e-06,
1861
+ "loss": 0.0785,
1862
  "step": 309
1863
  },
1864
  {
1865
  "epoch": 1.65,
1866
  "learning_rate": 8.882393548598258e-06,
1867
+ "loss": 0.0737,
1868
  "step": 310
1869
  },
1870
  {
1871
  "epoch": 1.65,
1872
  "learning_rate": 8.825338966422735e-06,
1873
+ "loss": 0.062,
1874
  "step": 311
1875
  },
1876
  {
1877
  "epoch": 1.66,
1878
  "learning_rate": 8.768323131102552e-06,
1879
+ "loss": 0.0685,
1880
  "step": 312
1881
  },
1882
  {
1883
  "epoch": 1.66,
1884
  "learning_rate": 8.711347923337122e-06,
1885
+ "loss": 0.0618,
1886
  "step": 313
1887
  },
1888
  {
1889
  "epoch": 1.67,
1890
  "learning_rate": 8.65441522248575e-06,
1891
+ "loss": 0.0728,
1892
  "step": 314
1893
  },
1894
  {
1895
  "epoch": 1.68,
1896
  "learning_rate": 8.59752690650561e-06,
1897
+ "loss": 0.0562,
1898
  "step": 315
1899
  },
1900
  {
1901
  "epoch": 1.68,
1902
  "learning_rate": 8.540684851889823e-06,
1903
+ "loss": 0.0772,
1904
  "step": 316
1905
  },
1906
  {
1907
  "epoch": 1.69,
1908
  "learning_rate": 8.483890933605558e-06,
1909
+ "loss": 0.0711,
1910
  "step": 317
1911
  },
1912
  {
1913
  "epoch": 1.69,
1914
  "learning_rate": 8.427147025032171e-06,
1915
+ "loss": 0.0579,
1916
  "step": 318
1917
  },
1918
  {
1919
  "epoch": 1.7,
1920
  "learning_rate": 8.37045499789943e-06,
1921
+ "loss": 0.0607,
1922
  "step": 319
1923
  },
1924
  {
1925
  "epoch": 1.7,
1926
  "learning_rate": 8.313816722225751e-06,
1927
+ "loss": 0.0692,
1928
  "step": 320
1929
  },
1930
  {
1931
  "epoch": 1.71,
1932
  "learning_rate": 8.257234066256543e-06,
1933
+ "loss": 0.0632,
1934
  "step": 321
1935
  },
1936
  {
1937
  "epoch": 1.71,
1938
  "learning_rate": 8.200708896402557e-06,
1939
+ "loss": 0.0706,
1940
  "step": 322
1941
  },
1942
  {
1943
  "epoch": 1.72,
1944
  "learning_rate": 8.144243077178329e-06,
1945
+ "loss": 0.0612,
1946
  "step": 323
1947
  },
1948
  {
1949
  "epoch": 1.72,
1950
  "learning_rate": 8.087838471140696e-06,
1951
+ "loss": 0.0684,
1952
  "step": 324
1953
  },
1954
  {
1955
  "epoch": 1.73,
1956
  "learning_rate": 8.031496938827329e-06,
1957
+ "loss": 0.0712,
1958
  "step": 325
1959
  },
1960
  {
1961
  "epoch": 1.73,
1962
  "learning_rate": 7.97522033869539e-06,
1963
+ "loss": 0.0676,
1964
  "step": 326
1965
  },
1966
  {
1967
  "epoch": 1.74,
1968
  "learning_rate": 7.9190105270602e-06,
1969
+ "loss": 0.0643,
1970
  "step": 327
1971
  },
1972
  {
1973
  "epoch": 1.74,
1974
  "learning_rate": 7.86286935803404e-06,
1975
+ "loss": 0.0602,
1976
  "step": 328
1977
  },
1978
  {
1979
  "epoch": 1.75,
1980
  "learning_rate": 7.806798683464965e-06,
1981
+ "loss": 0.0594,
1982
  "step": 329
1983
  },
1984
  {
1985
  "epoch": 1.76,
1986
  "learning_rate": 7.750800352875734e-06,
1987
+ "loss": 0.0677,
1988
  "step": 330
1989
  },
1990
  {
1991
  "epoch": 1.76,
1992
  "learning_rate": 7.694876213402801e-06,
1993
+ "loss": 0.0684,
1994
  "step": 331
1995
  },
1996
  {
1997
  "epoch": 1.77,
1998
  "learning_rate": 7.63902810973538e-06,
1999
+ "loss": 0.0599,
2000
  "step": 332
2001
  },
2002
  {
2003
  "epoch": 1.77,
2004
  "learning_rate": 7.583257884054613e-06,
2005
+ "loss": 0.0711,
2006
  "step": 333
2007
  },
2008
  {
2009
  "epoch": 1.78,
2010
  "learning_rate": 7.527567375972772e-06,
2011
+ "loss": 0.0724,
2012
  "step": 334
2013
  },
2014
  {
2015
  "epoch": 1.78,
2016
  "learning_rate": 7.471958422472618e-06,
2017
+ "loss": 0.0579,
2018
  "step": 335
2019
  },
2020
  {
2021
  "epoch": 1.79,
2022
  "learning_rate": 7.416432857846783e-06,
2023
+ "loss": 0.0544,
2024
  "step": 336
2025
  },
2026
  {
2027
  "epoch": 1.79,
2028
  "learning_rate": 7.360992513637257e-06,
2029
+ "loss": 0.0559,
2030
  "step": 337
2031
  },
2032
  {
2033
  "epoch": 1.8,
2034
  "learning_rate": 7.305639218575009e-06,
2035
+ "loss": 0.0681,
2036
  "step": 338
2037
  },
2038
  {
2039
  "epoch": 1.8,
2040
  "learning_rate": 7.250374798519626e-06,
2041
+ "loss": 0.0668,
2042
  "step": 339
2043
  },
2044
  {
2045
  "epoch": 1.81,
2046
  "learning_rate": 7.1952010763991146e-06,
2047
+ "loss": 0.0787,
2048
  "step": 340
2049
  },
2050
  {
2051
  "epoch": 1.81,
2052
  "learning_rate": 7.140119872149743e-06,
2053
+ "loss": 0.0739,
2054
  "step": 341
2055
  },
2056
  {
2057
  "epoch": 1.82,
2058
  "learning_rate": 7.085133002656044e-06,
2059
+ "loss": 0.0616,
2060
  "step": 342
2061
  },
2062
  {
2063
  "epoch": 1.82,
2064
  "learning_rate": 7.030242281690856e-06,
2065
+ "loss": 0.052,
2066
  "step": 343
2067
  },
2068
  {
2069
  "epoch": 1.83,
2070
  "learning_rate": 6.975449519855495e-06,
2071
+ "loss": 0.0676,
2072
  "step": 344
2073
  },
2074
  {
2075
  "epoch": 1.84,
2076
  "learning_rate": 6.9207565245200614e-06,
2077
+ "loss": 0.0576,
2078
  "step": 345
2079
  },
2080
  {
2081
  "epoch": 1.84,
2082
  "learning_rate": 6.866165099763782e-06,
2083
+ "loss": 0.0547,
2084
  "step": 346
2085
  },
2086
  {
2087
  "epoch": 1.85,
2088
  "learning_rate": 6.811677046315535e-06,
2089
+ "loss": 0.0615,
2090
  "step": 347
2091
  },
2092
  {
2093
  "epoch": 1.85,
2094
  "learning_rate": 6.757294161494426e-06,
2095
+ "loss": 0.0533,
2096
  "step": 348
2097
  },
2098
  {
2099
  "epoch": 1.86,
2100
  "learning_rate": 6.70301823915052e-06,
2101
+ "loss": 0.0654,
2102
  "step": 349
2103
  },
2104
  {
2105
  "epoch": 1.86,
2106
  "learning_rate": 6.64885106960567e-06,
2107
+ "loss": 0.0616,
2108
  "step": 350
2109
  },
2110
  {
2111
  "epoch": 1.87,
2112
  "learning_rate": 6.594794439594443e-06,
2113
+ "loss": 0.0602,
2114
  "step": 351
2115
  },
2116
  {
2117
  "epoch": 1.87,
2118
  "learning_rate": 6.54085013220521e-06,
2119
+ "loss": 0.0565,
2120
  "step": 352
2121
  },
2122
  {
2123
  "epoch": 1.88,
2124
  "learning_rate": 6.48701992682131e-06,
2125
+ "loss": 0.0481,
2126
  "step": 353
2127
  },
2128
  {
2129
  "epoch": 1.88,
2130
  "learning_rate": 6.4333055990623674e-06,
2131
+ "loss": 0.0583,
2132
  "step": 354
2133
  },
2134
  {
2135
  "epoch": 1.89,
2136
  "learning_rate": 6.379708920725713e-06,
2137
+ "loss": 0.0598,
2138
  "step": 355
2139
  },
2140
  {
2141
  "epoch": 1.89,
2142
  "learning_rate": 6.3262316597279506e-06,
2143
+ "loss": 0.0565,
2144
  "step": 356
2145
  },
2146
  {
2147
  "epoch": 1.9,
2148
  "learning_rate": 6.272875580046633e-06,
2149
+ "loss": 0.0684,
2150
  "step": 357
2151
  },
2152
  {
2153
  "epoch": 1.9,
2154
  "learning_rate": 6.219642441662077e-06,
2155
+ "loss": 0.0593,
2156
  "step": 358
2157
  },
2158
  {
2159
  "epoch": 1.91,
2160
  "learning_rate": 6.1665340004993164e-06,
2161
+ "loss": 0.0567,
2162
  "step": 359
2163
  },
2164
  {
2165
  "epoch": 1.91,
2166
  "learning_rate": 6.113552008370172e-06,
2167
+ "loss": 0.064,
2168
  "step": 360
2169
  },
2170
  {
2171
  "epoch": 1.92,
2172
  "learning_rate": 6.06069821291548e-06,
2173
+ "loss": 0.0613,
2174
  "step": 361
2175
  },
2176
  {
2177
  "epoch": 1.93,
2178
  "learning_rate": 6.007974357547424e-06,
2179
+ "loss": 0.0671,
2180
  "step": 362
2181
  },
2182
  {
2183
  "epoch": 1.93,
2184
  "learning_rate": 5.9553821813920545e-06,
2185
+ "loss": 0.0572,
2186
  "step": 363
2187
  },
2188
  {
2189
  "epoch": 1.94,
2190
  "learning_rate": 5.902923419231902e-06,
2191
+ "loss": 0.0432,
2192
  "step": 364
2193
  },
2194
  {
2195
  "epoch": 1.94,
2196
  "learning_rate": 5.850599801448757e-06,
2197
+ "loss": 0.0624,
2198
  "step": 365
2199
  },
2200
  {
2201
  "epoch": 1.95,
2202
  "learning_rate": 5.798413053966607e-06,
2203
+ "loss": 0.0717,
2204
  "step": 366
2205
  },
2206
  {
2207
  "epoch": 1.95,
2208
  "learning_rate": 5.74636489819469e-06,
2209
+ "loss": 0.064,
2210
  "step": 367
2211
  },
2212
  {
2213
  "epoch": 1.96,
2214
  "learning_rate": 5.6944570509707185e-06,
2215
+ "loss": 0.0546,
2216
  "step": 368
2217
  },
2218
  {
2219
  "epoch": 1.96,
2220
  "learning_rate": 5.6426912245042435e-06,
2221
+ "loss": 0.0653,
2222
  "step": 369
2223
  },
2224
  {
2225
  "epoch": 1.97,
2226
  "learning_rate": 5.5910691263201985e-06,
2227
+ "loss": 0.0492,
2228
  "step": 370
2229
  },
2230
  {
2231
  "epoch": 1.97,
2232
  "learning_rate": 5.5395924592025384e-06,
2233
+ "loss": 0.0595,
2234
  "step": 371
2235
  },
2236
  {
2237
  "epoch": 1.98,
2238
  "learning_rate": 5.488262921138098e-06,
2239
+ "loss": 0.0607,
2240
  "step": 372
2241
  },
2242
  {
2243
  "epoch": 1.98,
2244
  "learning_rate": 5.437082205260593e-06,
2245
+ "loss": 0.0571,
2246
  "step": 373
2247
  },
2248
  {
2249
  "epoch": 1.99,
2250
  "learning_rate": 5.3860519997947295e-06,
2251
+ "loss": 0.0818,
2252
  "step": 374
2253
  },
2254
  {
2255
  "epoch": 1.99,
2256
  "learning_rate": 5.335173988000566e-06,
2257
+ "loss": 0.0599,
2258
  "step": 375
2259
  },
2260
  {
2261
  "epoch": 2.0,
2262
  "learning_rate": 5.284449848117954e-06,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2263
  "loss": 0.052,
2264
+ "step": 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2265
  }
2266
  ],
2267
  "max_steps": 564,
2268
  "num_train_epochs": 3,
2269
+ "total_flos": 20423908786176.0,
2270
  "trial_name": null,
2271
  "trial_params": null
2272
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3a15c5c1733dab7d426da137b0f0bafece8bf8d76c8087527a6ba7471f49851
3
  size 5819
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad8848292df93b3a6ec679f158060cf333018cc301781c08a0eee936fbb2a15
3
  size 5819
zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)