teowu commited on
Commit
292d9a2
1 Parent(s): 1ca8adc

Upload modeling_llama2.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_llama2.py +836 -0
modeling_llama2.py ADDED
@@ -0,0 +1,836 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from functools import partial
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ import torch.utils.checkpoint
9
+ from torch import nn
10
+
11
+
12
+ import copy
13
+ import os
14
+ import sys
15
+
16
+ dir_path = os.path.dirname(os.path.realpath(__file__))
17
+ sys.path.insert(0, dir_path)
18
+
19
+ from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
20
+
21
+ import transformers
22
+ from transformers.models.llama.modeling_llama import *
23
+
24
+ def _get_unpad_data(attention_mask):
25
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
26
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
27
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
28
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
29
+ return (
30
+ indices,
31
+ cu_seqlens,
32
+ max_seqlen_in_batch,
33
+ )
34
+
35
+
36
+ from transformers.configuration_utils import PretrainedConfig
37
+ from transformers.utils import logging
38
+
39
+ from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
40
+ from .configuration_mplug_owl2 import LlamaConfig
41
+
42
+ class MultiwayNetwork(nn.Module):
43
+
44
+ def __init__(self, module_provider, num_multiway=2):
45
+ super(MultiwayNetwork, self).__init__()
46
+
47
+ self.multiway = torch.nn.ModuleList([module_provider() for _ in range(num_multiway)])
48
+
49
+ def forward(self, hidden_states, multiway_indices):
50
+
51
+ if len(self.multiway) == 1:
52
+ return self.multiway[0](hidden_states)
53
+
54
+ output_hidden_states = torch.empty_like(hidden_states)
55
+
56
+ for idx, subway in enumerate(self.multiway):
57
+ local_indices = multiway_indices.eq(idx).nonzero(as_tuple=True)
58
+ hidden = hidden_states[local_indices].unsqueeze(1).contiguous()
59
+ if hidden.numel():
60
+ output = subway(hidden)
61
+ if isinstance(output, tuple):
62
+ output = output[0]
63
+ output = output.squeeze(1)
64
+ output_hidden_states[local_indices] = output
65
+
66
+ return output_hidden_states.contiguous()
67
+
68
+
69
+ class LlamaAttention(nn.Module):
70
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
71
+
72
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
73
+ super().__init__()
74
+ self.config = config
75
+ self.layer_idx = layer_idx
76
+ if layer_idx is None:
77
+ logger.warning_once(
78
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
79
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
80
+ "when creating this class."
81
+ )
82
+
83
+ self.attention_dropout = config.attention_dropout
84
+ self.hidden_size = config.hidden_size
85
+ self.num_heads = config.num_attention_heads
86
+ self.head_dim = self.hidden_size // self.num_heads
87
+ self.num_key_value_heads = config.num_key_value_heads
88
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
89
+ self.max_position_embeddings = config.max_position_embeddings
90
+ self.rope_theta = config.rope_theta
91
+ self.is_causal = True
92
+
93
+ if (self.head_dim * self.num_heads) != self.hidden_size:
94
+ raise ValueError(
95
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
96
+ f" and `num_heads`: {self.num_heads})."
97
+ )
98
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
99
+ self.k_proj = MultiwayNetwork(module_provider=partial(
100
+ nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
101
+ )
102
+ self.v_proj = MultiwayNetwork(module_provider=partial(
103
+ nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
104
+ )
105
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
106
+ self._init_rope()
107
+
108
+ def _init_rope(self):
109
+ if self.config.rope_scaling is None:
110
+ self.rotary_emb = LlamaRotaryEmbedding(
111
+ self.head_dim,
112
+ max_position_embeddings=self.max_position_embeddings,
113
+ base=self.rope_theta,
114
+ )
115
+ else:
116
+ scaling_type = self.config.rope_scaling["type"]
117
+ scaling_factor = self.config.rope_scaling["factor"]
118
+ if scaling_type == "linear":
119
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
120
+ self.head_dim,
121
+ max_position_embeddings=self.max_position_embeddings,
122
+ scaling_factor=scaling_factor,
123
+ base=self.rope_theta,
124
+ )
125
+ elif scaling_type == "dynamic":
126
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
127
+ self.head_dim,
128
+ max_position_embeddings=self.max_position_embeddings,
129
+ scaling_factor=scaling_factor,
130
+ base=self.rope_theta,
131
+ )
132
+ else:
133
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
134
+
135
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
136
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
137
+
138
+ def forward(
139
+ self,
140
+ hidden_states: torch.Tensor,
141
+ modality_indicators: torch.Tensor,
142
+ attention_mask: Optional[torch.Tensor] = None,
143
+ position_ids: Optional[torch.LongTensor] = None,
144
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
145
+ output_attentions: bool = False,
146
+ use_cache: bool = False,
147
+ padding_mask: Optional[torch.LongTensor] = None,
148
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
149
+ bsz, q_len, _ = hidden_states.size()
150
+
151
+ query_states = self.q_proj(hidden_states, )
152
+ key_states = self.k_proj(hidden_states, modality_indicators)
153
+ value_states = self.v_proj(hidden_states, modality_indicators)
154
+
155
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
156
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
157
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
158
+
159
+ kv_seq_len = key_states.shape[-2]
160
+ if past_key_value is not None:
161
+ kv_seq_len += past_key_value[0].shape[-2]
162
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
163
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
164
+
165
+ if past_key_value is not None:
166
+ # reuse k, v, self_attention
167
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
168
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
169
+
170
+ past_key_value = (key_states, value_states) if use_cache else None
171
+
172
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
173
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
174
+
175
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
176
+
177
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
178
+ raise ValueError(
179
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
180
+ f" {attn_weights.size()}"
181
+ )
182
+
183
+ if attention_mask is not None:
184
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
185
+ raise ValueError(
186
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
187
+ )
188
+ attn_weights = attn_weights + attention_mask
189
+
190
+ # upcast attention to fp32
191
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
192
+ attn_output = torch.matmul(attn_weights, value_states)
193
+
194
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
195
+ raise ValueError(
196
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
197
+ f" {attn_output.size()}"
198
+ )
199
+
200
+ attn_output = attn_output.transpose(1, 2).contiguous()
201
+
202
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
203
+
204
+ attn_output = self.o_proj(attn_output)
205
+
206
+ if not output_attentions:
207
+ attn_weights = None
208
+
209
+ return attn_output, attn_weights, past_key_value
210
+
211
+
212
+ class LlamaFlashAttention2(LlamaAttention):
213
+ """
214
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
215
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
216
+ flash attention and deal with padding tokens in case the input contains any of them.
217
+ """
218
+
219
+ def __init__(self, *args, **kwargs):
220
+ super().__init__(*args, **kwargs)
221
+
222
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
223
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
224
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
225
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
226
+
227
+ def forward(
228
+ self,
229
+ hidden_states: torch.Tensor,
230
+ modality_indicators: torch.Tensor,
231
+ attention_mask: Optional[torch.LongTensor] = None,
232
+ position_ids: Optional[torch.LongTensor] = None,
233
+ past_key_value: Optional[Cache] = None,
234
+ output_attentions: bool = False,
235
+ use_cache: bool = False,
236
+ **kwargs,
237
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
238
+ # LlamaFlashAttention2 attention does not support output_attentions
239
+ if "padding_mask" in kwargs:
240
+ warnings.warn(
241
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
242
+ )
243
+
244
+ # overwrite attention_mask with padding_mask
245
+ attention_mask = kwargs.pop("padding_mask")
246
+
247
+ output_attentions = False
248
+
249
+ bsz, q_len, _ = hidden_states.size()
250
+
251
+ query_states = self.q_proj(hidden_states)
252
+ key_states = self.k_proj(hidden_states, modality_indicators)
253
+ value_states = self.v_proj(hidden_states, modality_indicators)
254
+
255
+ # Flash attention requires the input to have the shape
256
+ # batch_size x seq_length x head_dim x hidden_dim
257
+ # therefore we just need to keep the original shape
258
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
259
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
260
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
261
+
262
+ kv_seq_len = key_states.shape[-2]
263
+ if past_key_value is not None:
264
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
265
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
266
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
267
+
268
+ if past_key_value is not None:
269
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
270
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
271
+
272
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
273
+ # to be able to avoid many of these transpose/reshape/view.
274
+ query_states = query_states.transpose(1, 2)
275
+ key_states = key_states.transpose(1, 2)
276
+ value_states = value_states.transpose(1, 2)
277
+
278
+ dropout_rate = self.attention_dropout if self.training else 0.0
279
+
280
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
281
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
282
+ # cast them back in the correct dtype just to be sure everything works as expected.
283
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
284
+ # in fp32. (LlamaRMSNorm handles it correctly)
285
+
286
+ input_dtype = query_states.dtype
287
+ if input_dtype == torch.float32:
288
+ if torch.is_autocast_enabled():
289
+ target_dtype = torch.get_autocast_gpu_dtype()
290
+ # Handle the case where the model is quantized
291
+ elif hasattr(self.config, "_pre_quantization_dtype"):
292
+ target_dtype = self.config._pre_quantization_dtype
293
+ else:
294
+ target_dtype = self.q_proj.weight.dtype
295
+
296
+ logger.warning_once(
297
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
298
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
299
+ f" {target_dtype}."
300
+ )
301
+
302
+ query_states = query_states.to(target_dtype)
303
+ key_states = key_states.to(target_dtype)
304
+ value_states = value_states.to(target_dtype)
305
+
306
+ attn_output = self._flash_attention_forward(
307
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
308
+ )
309
+
310
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
311
+ attn_output = self.o_proj(attn_output)
312
+
313
+ if not output_attentions:
314
+ attn_weights = None
315
+
316
+ return attn_output, attn_weights, past_key_value
317
+
318
+ def _flash_attention_forward(
319
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
320
+ ):
321
+ """
322
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
323
+ first unpad the input, then computes the attention scores and pad the final attention scores.
324
+
325
+ Args:
326
+ query_states (`torch.Tensor`):
327
+ Input query states to be passed to Flash Attention API
328
+ key_states (`torch.Tensor`):
329
+ Input key states to be passed to Flash Attention API
330
+ value_states (`torch.Tensor`):
331
+ Input value states to be passed to Flash Attention API
332
+ attention_mask (`torch.Tensor`):
333
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
334
+ position of padding tokens and 1 for the position of non-padding tokens.
335
+ dropout (`int`, *optional*):
336
+ Attention dropout
337
+ softmax_scale (`float`, *optional*):
338
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
339
+ """
340
+ if not self._flash_attn_uses_top_left_mask:
341
+ causal = self.is_causal
342
+ else:
343
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
344
+ causal = self.is_causal and query_length != 1
345
+
346
+ # Contains at least one padding token in the sequence
347
+ if attention_mask is not None:
348
+ batch_size = query_states.shape[0]
349
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
350
+ query_states, key_states, value_states, attention_mask, query_length
351
+ )
352
+
353
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
354
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
355
+
356
+ attn_output_unpad = flash_attn_varlen_func(
357
+ query_states,
358
+ key_states,
359
+ value_states,
360
+ cu_seqlens_q=cu_seqlens_q,
361
+ cu_seqlens_k=cu_seqlens_k,
362
+ max_seqlen_q=max_seqlen_in_batch_q,
363
+ max_seqlen_k=max_seqlen_in_batch_k,
364
+ dropout_p=dropout,
365
+ softmax_scale=softmax_scale,
366
+ causal=causal,
367
+ )
368
+
369
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
370
+ else:
371
+ attn_output = flash_attn_func(
372
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
373
+ )
374
+
375
+ return attn_output
376
+
377
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
378
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
379
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
380
+
381
+ key_layer = index_first_axis(
382
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
383
+ )
384
+ value_layer = index_first_axis(
385
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
386
+ )
387
+ if query_length == kv_seq_len:
388
+ query_layer = index_first_axis(
389
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
390
+ )
391
+ cu_seqlens_q = cu_seqlens_k
392
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
393
+ indices_q = indices_k
394
+ elif query_length == 1:
395
+ max_seqlen_in_batch_q = 1
396
+ cu_seqlens_q = torch.arange(
397
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
398
+ ) # There is a memcpy here, that is very bad.
399
+ indices_q = cu_seqlens_q[:-1]
400
+ query_layer = query_layer.squeeze(1)
401
+ else:
402
+ # The -q_len: slice assumes left padding.
403
+ attention_mask = attention_mask[:, -query_length:]
404
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
405
+
406
+ return (
407
+ query_layer,
408
+ key_layer,
409
+ value_layer,
410
+ indices_q,
411
+ (cu_seqlens_q, cu_seqlens_k),
412
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
413
+ )
414
+
415
+
416
+ class LlamaSdpaAttention(LlamaAttention):
417
+ """
418
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
419
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
420
+ SDPA API.
421
+ """
422
+
423
+ # Adapted from LlamaAttention.forward
424
+ def forward(
425
+ self,
426
+ hidden_states: torch.Tensor,
427
+ modality_indicators: torch.Tensor,
428
+ attention_mask: Optional[torch.Tensor] = None,
429
+ position_ids: Optional[torch.LongTensor] = None,
430
+ past_key_value: Optional[Cache] = None,
431
+ output_attentions: bool = False,
432
+ use_cache: bool = False,
433
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
434
+ if output_attentions:
435
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
436
+ logger.warning_once(
437
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
438
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
439
+ )
440
+ return super().forward(
441
+ hidden_states=hidden_states,
442
+ modality_indicators=modality_indicators,
443
+ attention_mask=attention_mask,
444
+ position_ids=position_ids,
445
+ past_key_value=past_key_value,
446
+ output_attentions=output_attentions,
447
+ use_cache=use_cache,
448
+ )
449
+
450
+ bsz, q_len, _ = hidden_states.size()
451
+
452
+ query_states = self.q_proj(hidden_states)
453
+ key_states = self.k_proj(hidden_states, modality_indicators)
454
+ value_states = self.v_proj(hidden_states, modality_indicators)
455
+
456
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
457
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
458
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
459
+
460
+ kv_seq_len = key_states.shape[-2]
461
+ if past_key_value is not None:
462
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
463
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
464
+
465
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
466
+
467
+ if past_key_value is not None:
468
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
469
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
470
+
471
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
472
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
473
+
474
+ if attention_mask is not None:
475
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
476
+ raise ValueError(
477
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
478
+ )
479
+
480
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
481
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
482
+ if query_states.device.type == "cuda" and attention_mask is not None:
483
+ query_states = query_states.contiguous()
484
+ key_states = key_states.contiguous()
485
+ value_states = value_states.contiguous()
486
+
487
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
488
+ query_states,
489
+ key_states,
490
+ value_states,
491
+ attn_mask=attention_mask,
492
+ dropout_p=self.attention_dropout if self.training else 0.0,
493
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
494
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
495
+ )
496
+
497
+ attn_output = attn_output.transpose(1, 2).contiguous()
498
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
499
+
500
+ attn_output = self.o_proj(attn_output)
501
+
502
+ return attn_output, None, past_key_value
503
+
504
+
505
+
506
+ LLAMA_ATTENTION_CLASSES = {
507
+ "eager": LlamaAttention,
508
+ "flash_attention_2": LlamaFlashAttention2,
509
+ "sdpa": LlamaSdpaAttention,
510
+ }
511
+
512
+ class LlamaDecoderLayer(nn.Module):
513
+ def __init__(self, config: LlamaConfig, layer_idx):
514
+ super().__init__()
515
+ self.hidden_size = config.hidden_size
516
+ self.self_attn = LlamaAttention(config=config)
517
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
518
+ self.mlp = LlamaMLP(config)
519
+ self.input_layernorm = MultiwayNetwork(module_provider=partial(
520
+ LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
521
+ ))
522
+ self.post_attention_layernorm = MultiwayNetwork(module_provider=partial(
523
+ LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
524
+ ))
525
+
526
+ def forward(
527
+ self,
528
+ hidden_states: torch.Tensor,
529
+ modality_indicators: torch.Tensor = None,
530
+ attention_mask: Optional[torch.Tensor] = None,
531
+ position_ids: Optional[torch.LongTensor] = None,
532
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
533
+ output_attentions: Optional[bool] = False,
534
+ use_cache: Optional[bool] = False,
535
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
536
+ """
537
+ Args:
538
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
539
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
540
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
541
+ output_attentions (`bool`, *optional*):
542
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
543
+ returned tensors for more detail.
544
+ use_cache (`bool`, *optional*):
545
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
546
+ (see `past_key_values`).
547
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
548
+ """
549
+
550
+ residual = hidden_states
551
+
552
+ hidden_states = self.input_layernorm(hidden_states, modality_indicators)
553
+
554
+ # Self Attention
555
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
556
+ hidden_states=hidden_states,
557
+ modality_indicators=modality_indicators,
558
+ attention_mask=attention_mask,
559
+ position_ids=position_ids,
560
+ past_key_value=past_key_value,
561
+ output_attentions=output_attentions,
562
+ use_cache=use_cache,
563
+ )
564
+ hidden_states = residual + hidden_states
565
+
566
+ # Fully Connected
567
+ residual = hidden_states
568
+ hidden_states = self.post_attention_layernorm(hidden_states, modality_indicators)
569
+ hidden_states = self.mlp(hidden_states)
570
+ hidden_states = residual + hidden_states
571
+
572
+ outputs = (hidden_states,)
573
+
574
+ if output_attentions:
575
+ outputs += (self_attn_weights,)
576
+
577
+ if use_cache:
578
+ outputs += (present_key_value,)
579
+
580
+ return outputs
581
+
582
+
583
+ def model_forward(
584
+ self,
585
+ input_ids: torch.LongTensor = None,
586
+ modality_indicators: torch.Tensor = None,
587
+ attention_mask: Optional[torch.Tensor] = None,
588
+ position_ids: Optional[torch.LongTensor] = None,
589
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
590
+ inputs_embeds: Optional[torch.FloatTensor] = None,
591
+ use_cache: Optional[bool] = None,
592
+ output_attentions: Optional[bool] = None,
593
+ output_hidden_states: Optional[bool] = None,
594
+ return_dict: Optional[bool] = None,
595
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
596
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
597
+ output_hidden_states = (
598
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
599
+ )
600
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
601
+
602
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
603
+
604
+ # retrieve input_ids and inputs_embeds
605
+ if input_ids is not None and inputs_embeds is not None:
606
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
607
+ elif input_ids is not None:
608
+ batch_size, seq_length = input_ids.shape
609
+ elif inputs_embeds is not None:
610
+ batch_size, seq_length, _ = inputs_embeds.shape
611
+ else:
612
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
613
+
614
+ seq_length_with_past = seq_length
615
+ past_key_values_length = 0
616
+
617
+ if past_key_values is not None:
618
+ past_key_values_length = past_key_values[0][0].shape[2]
619
+ seq_length_with_past = seq_length_with_past + past_key_values_length
620
+
621
+ if position_ids is None:
622
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
623
+ position_ids = torch.arange(
624
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
625
+ )
626
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
627
+ else:
628
+ position_ids = position_ids.view(-1, seq_length).long()
629
+
630
+ if inputs_embeds is None:
631
+ inputs_embeds = self.embed_tokens(input_ids)
632
+ # embed positions
633
+ if attention_mask is None:
634
+ attention_mask = torch.ones(
635
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
636
+ )
637
+
638
+ if self._use_flash_attention_2:
639
+ # 2d mask is passed through the layers
640
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
641
+ elif self._use_sdpa and not output_attentions:
642
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
643
+ # the manual implementation that requires a 4D causal mask in all cases.
644
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
645
+ attention_mask,
646
+ (batch_size, seq_length),
647
+ inputs_embeds,
648
+ past_key_values_length,
649
+ )
650
+ else:
651
+ # 4d mask is passed through the layers
652
+ attention_mask = _prepare_4d_causal_attention_mask(
653
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
654
+ )
655
+
656
+ hidden_states = inputs_embeds
657
+
658
+ if self.gradient_checkpointing and self.training:
659
+ if use_cache:
660
+ logger.warning_once(
661
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
662
+ )
663
+ use_cache = False
664
+
665
+ # decoder layers
666
+ all_hidden_states = () if output_hidden_states else None
667
+ all_self_attns = () if output_attentions else None
668
+ next_decoder_cache = () if use_cache else None
669
+
670
+ for idx, decoder_layer in enumerate(self.layers):
671
+ if output_hidden_states:
672
+ all_hidden_states += (hidden_states,)
673
+
674
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
675
+
676
+ if self.gradient_checkpointing and self.training:
677
+
678
+ def create_custom_forward(module):
679
+ def custom_forward(*inputs):
680
+ # None for past_key_value
681
+ return module(*inputs, past_key_value, output_attentions)
682
+
683
+ return custom_forward
684
+
685
+ layer_outputs = torch.utils.checkpoint.checkpoint(
686
+ create_custom_forward(decoder_layer),
687
+ hidden_states,
688
+ modality_indicators,
689
+ attention_mask,
690
+ position_ids,
691
+ )
692
+ else:
693
+ layer_outputs = decoder_layer(
694
+ hidden_states,
695
+ modality_indicators=modality_indicators,
696
+ attention_mask=attention_mask,
697
+ position_ids=position_ids,
698
+ past_key_value=past_key_value,
699
+ output_attentions=output_attentions,
700
+ use_cache=use_cache,
701
+ )
702
+
703
+ hidden_states = layer_outputs[0]
704
+
705
+ if use_cache:
706
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
707
+
708
+ if output_attentions:
709
+ all_self_attns += (layer_outputs[1],)
710
+
711
+ hidden_states = self.norm(hidden_states)
712
+
713
+ # add hidden states from the last decoder layer
714
+ if output_hidden_states:
715
+ all_hidden_states += (hidden_states,)
716
+
717
+ next_cache = next_decoder_cache if use_cache else None
718
+ if not return_dict:
719
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
720
+ return BaseModelOutputWithPast(
721
+ last_hidden_state=hidden_states,
722
+ past_key_values=next_cache,
723
+ hidden_states=all_hidden_states,
724
+ attentions=all_self_attns,
725
+ )
726
+
727
+
728
+ def causal_model_forward(
729
+ self,
730
+ input_ids: torch.LongTensor = None,
731
+ modality_indicators: torch.Tensor = None,
732
+ attention_mask: Optional[torch.Tensor] = None,
733
+ position_ids: Optional[torch.LongTensor] = None,
734
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
735
+ inputs_embeds: Optional[torch.FloatTensor] = None,
736
+ labels: Optional[torch.LongTensor] = None,
737
+ use_cache: Optional[bool] = None,
738
+ output_attentions: Optional[bool] = None,
739
+ output_hidden_states: Optional[bool] = None,
740
+ return_dict: Optional[bool] = None,
741
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
742
+ r"""
743
+ Args:
744
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
745
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
746
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
747
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
748
+
749
+ Returns:
750
+
751
+ Example:
752
+
753
+ ```python
754
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
755
+
756
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
757
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
758
+
759
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
760
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
761
+
762
+ >>> # Generate
763
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
764
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
765
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
766
+ ```"""
767
+
768
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
769
+ output_hidden_states = (
770
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
771
+ )
772
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
773
+
774
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
775
+ outputs = self.model(
776
+ input_ids=input_ids,
777
+ modality_indicators=modality_indicators,
778
+ attention_mask=attention_mask,
779
+ position_ids=position_ids,
780
+ past_key_values=past_key_values,
781
+ inputs_embeds=inputs_embeds,
782
+ use_cache=use_cache,
783
+ output_attentions=output_attentions,
784
+ output_hidden_states=output_hidden_states,
785
+ return_dict=return_dict,
786
+ )
787
+
788
+ hidden_states = outputs[0]
789
+ if self.config.pretraining_tp > 1:
790
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
791
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
792
+ logits = torch.cat(logits, dim=-1)
793
+ else:
794
+ logits = self.lm_head(hidden_states)
795
+ logits = logits.float()
796
+
797
+ loss = None
798
+ if labels is not None:
799
+ # Shift so that tokens < n predict n
800
+ shift_logits = logits[..., :-1, :].contiguous()
801
+ shift_labels = labels[..., 1:].contiguous()
802
+ # Flatten the tokens
803
+ loss_fct = CrossEntropyLoss()
804
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
805
+ shift_labels = shift_labels.view(-1)
806
+ # Enable model parallelism
807
+ shift_labels = shift_labels.to(shift_logits.device)
808
+ loss = loss_fct(shift_logits, shift_labels)
809
+
810
+ if not return_dict:
811
+ output = (logits,) + outputs[1:]
812
+ return (loss,) + output if loss is not None else output
813
+
814
+ return CausalLMOutputWithPast(
815
+ loss=loss,
816
+ logits=logits,
817
+ past_key_values=outputs.past_key_values,
818
+ hidden_states=outputs.hidden_states,
819
+ attentions=outputs.attentions,
820
+ )
821
+
822
+ def replace_llama_modality_adaptive():
823
+ transformers.models.llama.configuration_llama.LlamaConfig = LlamaConfig
824
+ transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
825
+ transformers.models.llama.modeling_llama.LlamaFlashAttention2 = LlamaFlashAttention2
826
+ transformers.models.llama.modeling_llama.LlamaSdpaAttention = LlamaSdpaAttention
827
+ transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
828
+ transformers.models.llama.modeling_llama.LlamaModel.forward = model_forward
829
+ transformers.models.llama.modeling_llama.LlamaForCausalLM.forward = causal_model_forward
830
+
831
+
832
+ if __name__ == "__main__":
833
+ replace_llama_modality_adaptive()
834
+ config = transformers.LlamaConfig.from_pretrained('/cpfs01/shared/public/test/vicuna-7b-v1.5/')
835
+ model = transformers.LlamaForCausalLM(config)
836
+ print(model)