Update the config.json
Browse files- config.json +2 -2
- predict.py +6 -1
config.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75f1b7aecf776b76a7c3f771daebc1ef742a09a2d57c449749436100a0fd47f5
|
3 |
+
size 4002
|
predict.py
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
2 |
|
|
|
|
|
3 |
model_name = 'qanastek/XLMRoberta-Alexa-Intents-Classification'
|
4 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
5 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
6 |
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
7 |
|
8 |
res = classifier("réveille-moi à neuf heures du matin le vendredi")
|
9 |
-
print(res)
|
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
|
2 |
|
3 |
+
classes = ['audio_volume_other', 'play_music', 'iot_hue_lighton', 'general_greet', 'calendar_set', 'audio_volume_down', 'social_query', 'audio_volume_mute', 'iot_wemo_on', 'iot_hue_lightup', 'audio_volume_up', 'iot_coffee', 'takeaway_query', 'qa_maths', 'play_game', 'cooking_query', 'iot_hue_lightdim', 'iot_wemo_off', 'music_settings', 'weather_query', 'news_query', 'alarm_remove', 'social_post', 'recommendation_events', 'transport_taxi', 'takeaway_order', 'music_query', 'calendar_query', 'lists_query', 'qa_currency', 'recommendation_movies', 'general_joke', 'recommendation_locations', 'email_querycontact', 'lists_remove', 'play_audiobook', 'email_addcontact', 'lists_createoradd', 'play_radio', 'qa_stock', 'alarm_query', 'email_sendemail', 'general_quirky', 'music_likeness', 'cooking_recipe', 'email_query', 'datetime_query', 'transport_traffic', 'play_podcasts', 'iot_hue_lightchange', 'calendar_remove', 'transport_query', 'transport_ticket', 'qa_factoid', 'iot_cleaning', 'alarm_set', 'datetime_convert', 'iot_hue_lightoff', 'qa_definition', 'music_dislikeness']
|
4 |
+
|
5 |
model_name = 'qanastek/XLMRoberta-Alexa-Intents-Classification'
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
|
9 |
|
10 |
res = classifier("réveille-moi à neuf heures du matin le vendredi")
|
11 |
+
print(res)
|
12 |
+
# idx = int(res[0]["label"].split("_")[-1])
|
13 |
+
# print(idx)
|
14 |
+
# print(classes[idx])
|