qanastek's picture
Update README.md
4027d82
raw
history blame
4.05 kB
precision recall f1-score support
ADJ 0.9040 0.8828 0.8933 128
ADJFP 0.9811 0.9585 0.9697 434
ADJFS 0.9606 0.9826 0.9715 918
ADJMP 0.9613 0.9357 0.9483 451
ADJMS 0.9561 0.9611 0.9586 952
ADV 0.9870 0.9948 0.9908 1524
AUX 0.9956 0.9964 0.9960 1124
CHIF 0.9798 0.9774 0.9786 1239
COCO 1.0000 0.9989 0.9994 884
COSUB 0.9939 0.9939 0.9939 328
DET 0.9972 0.9972 0.9972 2897
DETFS 0.9990 1.0000 0.9995 1007
DETMS 1.0000 0.9993 0.9996 1426
DINTFS 0.9967 0.9902 0.9934 306
DINTMS 0.9923 0.9948 0.9935 387
INTJ 0.8000 0.8000 0.8000 5
MOTINC 0.5049 0.5827 0.5410 266
NFP 0.9807 0.9675 0.9740 892
NFS 0.9778 0.9699 0.9738 2588
NMP 0.9687 0.9495 0.9590 1367
NMS 0.9759 0.9560 0.9659 3181
NOUN 0.6164 0.8673 0.7206 113
NUM 0.6250 0.8333 0.7143 6
PART 1.0000 0.9375 0.9677 16
PDEMFP 1.0000 1.0000 1.0000 3
PDEMFS 1.0000 1.0000 1.0000 89
PDEMMP 1.0000 1.0000 1.0000 20
PDEMMS 1.0000 1.0000 1.0000 222
PINDFP 1.0000 1.0000 1.0000 3
PINDFS 0.8571 1.0000 0.9231 12
PINDMP 0.9000 1.0000 0.9474 9
PINDMS 0.9286 0.9701 0.9489 67
PINTFS 0.0000 0.0000 0.0000 2
PPER1S 1.0000 1.0000 1.0000 62
PPER2S 0.7500 1.0000 0.8571 3
PPER3FP 1.0000 1.0000 1.0000 9
PPER3FS 1.0000 1.0000 1.0000 96
PPER3MP 1.0000 1.0000 1.0000 31
PPER3MS 1.0000 1.0000 1.0000 377
PPOBJFP 1.0000 0.7500 0.8571 4
PPOBJFS 0.9167 0.8919 0.9041 37
PPOBJMP 0.7500 0.7500 0.7500 12
PPOBJMS 0.9371 0.9640 0.9504 139
PREF 1.0000 1.0000 1.0000 332
PREFP 1.0000 1.0000 1.0000 64
PREFS 1.0000 1.0000 1.0000 13
PREL 0.9964 0.9964 0.9964 277
PRELFP 1.0000 1.0000 1.0000 5
PRELFS 0.8000 1.0000 0.8889 4
PRELMP 1.0000 1.0000 1.0000 3
PRELMS 1.0000 1.0000 1.0000 11
PREP 0.9971 0.9977 0.9974 6161
PRON 0.9836 0.9836 0.9836 61
PROPN 0.9468 0.9503 0.9486 4310
PUNCT 1.0000 1.0000 1.0000 4019
SYM 0.9394 0.8158 0.8732 76
VERB 0.9956 0.9921 0.9938 2273
VPPFP 0.9145 0.9469 0.9304 113
VPPFS 0.9562 0.9597 0.9580 273
VPPMP 0.8827 0.9728 0.9256 147
VPPMS 0.9778 0.9794 0.9786 630
VPPRE 0.0000 0.0000 0.0000 1
X 0.9604 0.9935 0.9766 1073
XFAMIL 0.9386 0.9113 0.9248 1342
YPFOR 1.0000 1.0000 1.0000 2750
accuracy 0.9778 47574
macro avg 0.9151 0.9285 0.9202 47574
weighted avg 0.9785 0.9778 0.9780 47574
DatasetDict({
train: Dataset({
features: ['id', 'tokens', 'pos_tags'],
num_rows: 14453
})
validation: Dataset({
features: ['id', 'tokens', 'pos_tags'],
num_rows: 1477
})
test: Dataset({
features: ['id', 'tokens', 'pos_tags'],
num_rows: 417
})
})