qazisaad commited on
Commit
85d9cc1
1 Parent(s): 0791ef9

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.05 +/- 16.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69ee7f9c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69ee7f9ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69ee7f9d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69ee7f9dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f69ee7f9e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f69ee7f9ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69ee7f9f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69ee7fd040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f69ee7fd0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69ee7fd160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69ee7fd1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69ee7fd280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f69ee7f7810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675673800839624587, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABbujj7heA4/DYq+vP4Uq7536D0+W8dmvQAAAAAAAAAAIJ8FPkQubz6w29G+NrF/vn5G470jBgG+AAAAAAAAAAB2BHG+n4OQP5n4hb6y/SG/qWaQvqMnwjwAAAAAAAAAAADgxLtXfrI/bmoDvazGn75ZDkq91b8QvQAAAAAAAAAAmoCKvHtKlbouqtK0fpl7sBpNbLqdiws0AACAPwAAgD8ADFW86U/BP3mhpb03B5s99WVLve3ST70AAAAAAAAAAAByzL3iIwU+SDR1PYndbL7tkVE8f/gJPgAAAAAAAAAAmmHwvHjZ7Dz6byE+pL4tvoHIDLsmfj28AAAAAAAAAAAzqz69SPOouvhULzw2n5M84QXIOrrvgj0AAIA/AACAP+3NOL7gALs+VXdYPhZ7lL5ecme9Usv0PAAAAAAAAAAAGhlRvfTopj46nme9gvp7vi3Ix70mS3S8AAAAAAAAAADAuII9BYK5P5FpHD+KR1I9Dr1JvJa9uD0AAAAAAAAAALPhGT2iGw0/bG8RvumMir4dmdo73kHSvQAAAAAAAAAAAKGWvHbUALx/UY47wiqkPK72Vb0Oi4g9AACAPwAAgD+acYW7JL21P6oz07772co+o9maO4dcvz0AAAAAAAAAAObRCj1Q5rs+Em4qvfOMnr4YCtg8UjQBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIotPzbuy3cUCUhpRSlIwBbJRNAQGMAXSUR0CZit9nscABdX2UKGgGaAloD0MI1SDM7V7UbkCUhpRSlGgVS+doFkdAmYrtFrl/6XV9lChoBmgJaA9DCGgkQiPYBXJAlIaUUpRoFUvuaBZHQJmLMEpy6tl1fZQoaAZoCWgPQwhHqu/8okVyQJSGlFKUaBVNBgFoFkdAmYtU+PikwnV9lChoBmgJaA9DCDEL7ZxmmGxAlIaUUpRoFUv3aBZHQJmOUP7N0Nl1fZQoaAZoCWgPQwjvG197ZqZwQJSGlFKUaBVL8WgWR0CZjobDdgv2dX2UKGgGaAloD0MItcL0vUb1cECUhpRSlGgVTUIBaBZHQJmOhm5Dqnp1fZQoaAZoCWgPQwiuZTIcT5pxQJSGlFKUaBVNEQFoFkdAmY7DWCmMwXV9lChoBmgJaA9DCMNF7ulqHXJAlIaUUpRoFUvpaBZHQJmPGvRqoIh1fZQoaAZoCWgPQwhUpwNZD45wQJSGlFKUaBVL6mgWR0CZjy1bJOnEdX2UKGgGaAloD0MI8YKI1LTgb0CUhpRSlGgVS+hoFkdAmY9eLNwBHXV9lChoBmgJaA9DCPEqa5tiRXFAlIaUUpRoFU04AWgWR0CZkOVfNRm9dX2UKGgGaAloD0MI6kFBKRoRckCUhpRSlGgVS/poFkdAmZEuGoJiRXV9lChoBmgJaA9DCKmj42rky29AlIaUUpRoFUv+aBZHQJmRPu4PPLR1fZQoaAZoCWgPQwjwNm+cFF9xQJSGlFKUaBVL62gWR0CZkaU7CBPLdX2UKGgGaAloD0MI/TIYIxKmcECUhpRSlGgVS/poFkdAmZGz9S/CZXV9lChoBmgJaA9DCC+JsyIqhXFAlIaUUpRoFU0GAWgWR0CZkfUkOZssdX2UKGgGaAloD0MI71NVaKAZb0CUhpRSlGgVTXoBaBZHQJmS6VJL/S91fZQoaAZoCWgPQwgLuOf500JvQJSGlFKUaBVNgwFoFkdAmZPRUBGQS3V9lChoBmgJaA9DCNfDl4ki5W9AlIaUUpRoFUvlaBZHQJmVFKtga3t1fZQoaAZoCWgPQwjgZvFiITJwQJSGlFKUaBVL7GgWR0CZlRrl/6O6dX2UKGgGaAloD0MITdpU3SOwbkCUhpRSlGgVTWMBaBZHQJmVKtuDSPV1fZQoaAZoCWgPQwjj4T0Hlo9uQJSGlFKUaBVL72gWR0CZlep6yB07dX2UKGgGaAloD0MI8KKvIM1RcUCUhpRSlGgVTQgBaBZHQJmWHPnjhk11fZQoaAZoCWgPQwivQPSkzNdvQJSGlFKUaBVL9GgWR0CZliRGMGX5dX2UKGgGaAloD0MI24mSkAhockCUhpRSlGgVTQQBaBZHQJmWNqKxcFB1fZQoaAZoCWgPQwjLaU/JuTNwQJSGlFKUaBVNDwFoFkdAmZb4iTt9hXV9lChoBmgJaA9DCBx79lxmV3FAlIaUUpRoFUvsaBZHQJmXW0fHPu51fZQoaAZoCWgPQwjAWUqWk09vQJSGlFKUaBVNBAFoFkdAmZg8EvCdjHV9lChoBmgJaA9DCISaIVUU0W9AlIaUUpRoFUv1aBZHQJmYmSjgydp1fZQoaAZoCWgPQwjxf0dUaC5wQJSGlFKUaBVL5GgWR0CZmSVENOM3dX2UKGgGaAloD0MIKqvpeqJ/ckCUhpRSlGgVTSYBaBZHQJmZnxvvSc91fZQoaAZoCWgPQwghzVg0XU5wQJSGlFKUaBVNJAFoFkdAmZmfJaJQ+HV9lChoBmgJaA9DCGyTisaagnFAlIaUUpRoFUvbaBZHQJmZyrlvIfd1fZQoaAZoCWgPQwhQjgJEgdNxQJSGlFKUaBVNWQFoFkdAmZqJjUd7wHV9lChoBmgJaA9DCK5nCMfsIXJAlIaUUpRoFUvkaBZHQJmbMHs1KoR1fZQoaAZoCWgPQwiWmGclbaFyQJSGlFKUaBVL7GgWR0CZm1dZ7ojfdX2UKGgGaAloD0MIUMjO29jhcECUhpRSlGgVS/loFkdAmZulO0svqXV9lChoBmgJaA9DCESi0LIuFnFAlIaUUpRoFUvdaBZHQJmuln6Eal11fZQoaAZoCWgPQwhpOGVuPktyQJSGlFKUaBVL6mgWR0CZrswD/2kBdX2UKGgGaAloD0MIdQEvMyy2cECUhpRSlGgVS+5oFkdAma8/YvnKXHV9lChoBmgJaA9DCEbrqGrCwnJAlIaUUpRoFU0XAWgWR0CZsHbTtsvadX2UKGgGaAloD0MIzEOmfAj9bUCUhpRSlGgVTR0BaBZHQJmx917pmmN1fZQoaAZoCWgPQwh/iXjrfBtzQJSGlFKUaBVNDwFoFkdAmbIJS3solXV9lChoBmgJaA9DCKg1zTtOYnNAlIaUUpRoFU0HAWgWR0CZsvPZIxxldX2UKGgGaAloD0MIGt1B7AwzcECUhpRSlGgVS/FoFkdAmbNeafBeonV9lChoBmgJaA9DCOnRVE+mDHJAlIaUUpRoFUvnaBZHQJmzn6sQumJ1fZQoaAZoCWgPQwhuTiUDANdxQJSGlFKUaBVL7GgWR0CZs80lJHy3dX2UKGgGaAloD0MIQ+T09bytcUCUhpRSlGgVTR4BaBZHQJm0M29+PR11fZQoaAZoCWgPQwiifEELSclxQJSGlFKUaBVNHgFoFkdAmbXieZof0XV9lChoBmgJaA9DCDj27LkMgnFAlIaUUpRoFU0FAWgWR0CZthQaaTfSdX2UKGgGaAloD0MIj4zV5v8TbkCUhpRSlGgVS/FoFkdAmbb+E7GNrHV9lChoBmgJaA9DCABV3LgFzHJAlIaUUpRoFU0GAWgWR0CZtxt5UtI1dX2UKGgGaAloD0MIIa6cvXO/cUCUhpRSlGgVTQABaBZHQJm3HDNyHVR1fZQoaAZoCWgPQwikNnFyvxZwQJSGlFKUaBVL7mgWR0CZtzG/N7jUdX2UKGgGaAloD0MI8umxLYOrc0CUhpRSlGgVS/1oFkdAmbfzM3ZPEnV9lChoBmgJaA9DCE4mbhVEa3JAlIaUUpRoFU0KAWgWR0CZuvD/2kBTdX2UKGgGaAloD0MI6pWyDHH1cECUhpRSlGgVTTwBaBZHQJm7f2USqVB1fZQoaAZoCWgPQwhA9nr3B5RyQJSGlFKUaBVL+GgWR0CZu+uez2OAdX2UKGgGaAloD0MIHERrRZujU0CUhpRSlGgVS5hoFkdAmbyLFbVz63V9lChoBmgJaA9DCA/wpIWL43BAlIaUUpRoFU0ZAWgWR0CZvU+Vkc0cdX2UKGgGaAloD0MIjPZ4IR0cckCUhpRSlGgVTRcBaBZHQJm+O/TLGJh1fZQoaAZoCWgPQwi0rWadsShwQJSGlFKUaBVNDAFoFkdAmb481CPZI3V9lChoBmgJaA9DCNOjqZ5MhnFAlIaUUpRoFU0cAWgWR0CZvyFCswL3dX2UKGgGaAloD0MI++b+6rHzckCUhpRSlGgVTTQBaBZHQJnA3/5tWMl1fZQoaAZoCWgPQwiAKJgxhTRxQJSGlFKUaBVNTQFoFkdAmcFqcEvCdnV9lChoBmgJaA9DCNIcWfll7nJAlIaUUpRoFU0JAWgWR0CZwg9IPK+0dX2UKGgGaAloD0MIizcyj/wob0CUhpRSlGgVTToBaBZHQJnCi/vfCQ91fZQoaAZoCWgPQwgLJv4o6opxQJSGlFKUaBVNCwFoFkdAmcLFkH2RJXV9lChoBmgJaA9DCHvAPGTKRHNAlIaUUpRoFU0pAWgWR0CZwucs189fdX2UKGgGaAloD0MIGHlZEwuOb0CUhpRSlGgVTSwBaBZHQJnDEJng5zZ1fZQoaAZoCWgPQwgxtDo5Q8tuQJSGlFKUaBVNTwFoFkdAmcP7jghr33V9lChoBmgJaA9DCDf8brqlh3BAlIaUUpRoFU0AAWgWR0CZxJTKT0QLdX2UKGgGaAloD0MI/OHnv4fmb0CUhpRSlGgVTQIBaBZHQJnFYtCiRGN1fZQoaAZoCWgPQwjOp45Vyl9vQJSGlFKUaBVNNQFoFkdAmcW9Jrcj7nV9lChoBmgJaA9DCDS77q3ItXJAlIaUUpRoFU0FAWgWR0CZxqTRplBhdX2UKGgGaAloD0MI/Wt55fpfb0CUhpRSlGgVS+9oFkdAmcas94eLenV9lChoBmgJaA9DCFjjbDrC23JAlIaUUpRoFU1CAWgWR0CZxr/i5uqFdX2UKGgGaAloD0MIgosVNZjZbkCUhpRSlGgVTSgBaBZHQJnG+gCfYjB1fZQoaAZoCWgPQwiz8PW1Lm5uQJSGlFKUaBVL7mgWR0CZx7EcbR4RdX2UKGgGaAloD0MIIR/0bFaNbkCUhpRSlGgVTUkBaBZHQJnIZAbADaJ1fZQoaAZoCWgPQwjiWu1hr69vQJSGlFKUaBVL4WgWR0CZyOq5sj3VdX2UKGgGaAloD0MIdm9FYkL1cUCUhpRSlGgVS/BoFkdAmckqo2n89HV9lChoBmgJaA9DCDunWaBdzXBAlIaUUpRoFU0XAWgWR0CZyTIsiB5HdX2UKGgGaAloD0MIdxN80/R+bkCUhpRSlGgVTRUBaBZHQJnJrqt5le51fZQoaAZoCWgPQwiPOc/Y19lxQJSGlFKUaBVNFgFoFkdAmcpR7RfF73V9lChoBmgJaA9DCCr+74hKV3JAlIaUUpRoFU0WAWgWR0CZynU5MlC1dX2UKGgGaAloD0MIADYgQhx3c0CUhpRSlGgVS/JoFkdAmcr49xIatXV9lChoBmgJaA9DCMr9DkVBRnJAlIaUUpRoFUv+aBZHQJnMC2SdOIt1fZQoaAZoCWgPQwiPxTap6ItvQJSGlFKUaBVL/2gWR0CZzGWuoxYadX2UKGgGaAloD0MIWABTBs56ckCUhpRSlGgVS/NoFkdAmczxaouPFXV9lChoBmgJaA9DCCiCOA+njnBAlIaUUpRoFUv2aBZHQJnNHRv3rUt1fZQoaAZoCWgPQwhZbmk1pAZyQJSGlFKUaBVL+mgWR0CZzSacI7eVdX2UKGgGaAloD0MIt9RBXg9gckCUhpRSlGgVTVwBaBZHQJnNN1V5rxl1fZQoaAZoCWgPQwh9dVWgFn9xQJSGlFKUaBVNCwFoFkdAmc3RDkU9IXV9lChoBmgJaA9DCIfD0sBPx3FAlIaUUpRoFUvmaBZHQJnOSxjawll1fZQoaAZoCWgPQwgHP3EAvSdxQJSGlFKUaBVL52gWR0CZzwq4H5aedX2UKGgGaAloD0MI4Ec17Hf4bECUhpRSlGgVS/NoFkdAmc9WRmseXHV9lChoBmgJaA9DCGB2Tx4WHHJAlIaUUpRoFU0BAWgWR0CZz3qY7aIvdX2UKGgGaAloD0MINA71u7B3cECUhpRSlGgVTTYBaBZHQJnPrr8iwB51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dd6564c20053111bdbf0fb5ad39ef056ada9f40ea9138247ee30bc16d4b93ee
3
+ size 147364
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69ee7f9c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69ee7f9ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69ee7f9d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69ee7f9dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f69ee7f9e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f69ee7f9ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69ee7f9f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69ee7fd040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f69ee7fd0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69ee7fd160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69ee7fd1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69ee7fd280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f69ee7f7810>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675673800839624587,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABbujj7heA4/DYq+vP4Uq7536D0+W8dmvQAAAAAAAAAAIJ8FPkQubz6w29G+NrF/vn5G470jBgG+AAAAAAAAAAB2BHG+n4OQP5n4hb6y/SG/qWaQvqMnwjwAAAAAAAAAAADgxLtXfrI/bmoDvazGn75ZDkq91b8QvQAAAAAAAAAAmoCKvHtKlbouqtK0fpl7sBpNbLqdiws0AACAPwAAgD8ADFW86U/BP3mhpb03B5s99WVLve3ST70AAAAAAAAAAAByzL3iIwU+SDR1PYndbL7tkVE8f/gJPgAAAAAAAAAAmmHwvHjZ7Dz6byE+pL4tvoHIDLsmfj28AAAAAAAAAAAzqz69SPOouvhULzw2n5M84QXIOrrvgj0AAIA/AACAP+3NOL7gALs+VXdYPhZ7lL5ecme9Usv0PAAAAAAAAAAAGhlRvfTopj46nme9gvp7vi3Ix70mS3S8AAAAAAAAAADAuII9BYK5P5FpHD+KR1I9Dr1JvJa9uD0AAAAAAAAAALPhGT2iGw0/bG8RvumMir4dmdo73kHSvQAAAAAAAAAAAKGWvHbUALx/UY47wiqkPK72Vb0Oi4g9AACAPwAAgD+acYW7JL21P6oz07772co+o9maO4dcvz0AAAAAAAAAAObRCj1Q5rs+Em4qvfOMnr4YCtg8UjQBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIotPzbuy3cUCUhpRSlIwBbJRNAQGMAXSUR0CZit9nscABdX2UKGgGaAloD0MI1SDM7V7UbkCUhpRSlGgVS+doFkdAmYrtFrl/6XV9lChoBmgJaA9DCGgkQiPYBXJAlIaUUpRoFUvuaBZHQJmLMEpy6tl1fZQoaAZoCWgPQwhHqu/8okVyQJSGlFKUaBVNBgFoFkdAmYtU+PikwnV9lChoBmgJaA9DCDEL7ZxmmGxAlIaUUpRoFUv3aBZHQJmOUP7N0Nl1fZQoaAZoCWgPQwjvG197ZqZwQJSGlFKUaBVL8WgWR0CZjobDdgv2dX2UKGgGaAloD0MItcL0vUb1cECUhpRSlGgVTUIBaBZHQJmOhm5Dqnp1fZQoaAZoCWgPQwiuZTIcT5pxQJSGlFKUaBVNEQFoFkdAmY7DWCmMwXV9lChoBmgJaA9DCMNF7ulqHXJAlIaUUpRoFUvpaBZHQJmPGvRqoIh1fZQoaAZoCWgPQwhUpwNZD45wQJSGlFKUaBVL6mgWR0CZjy1bJOnEdX2UKGgGaAloD0MI8YKI1LTgb0CUhpRSlGgVS+hoFkdAmY9eLNwBHXV9lChoBmgJaA9DCPEqa5tiRXFAlIaUUpRoFU04AWgWR0CZkOVfNRm9dX2UKGgGaAloD0MI6kFBKRoRckCUhpRSlGgVS/poFkdAmZEuGoJiRXV9lChoBmgJaA9DCKmj42rky29AlIaUUpRoFUv+aBZHQJmRPu4PPLR1fZQoaAZoCWgPQwjwNm+cFF9xQJSGlFKUaBVL62gWR0CZkaU7CBPLdX2UKGgGaAloD0MI/TIYIxKmcECUhpRSlGgVS/poFkdAmZGz9S/CZXV9lChoBmgJaA9DCC+JsyIqhXFAlIaUUpRoFU0GAWgWR0CZkfUkOZssdX2UKGgGaAloD0MI71NVaKAZb0CUhpRSlGgVTXoBaBZHQJmS6VJL/S91fZQoaAZoCWgPQwgLuOf500JvQJSGlFKUaBVNgwFoFkdAmZPRUBGQS3V9lChoBmgJaA9DCNfDl4ki5W9AlIaUUpRoFUvlaBZHQJmVFKtga3t1fZQoaAZoCWgPQwjgZvFiITJwQJSGlFKUaBVL7GgWR0CZlRrl/6O6dX2UKGgGaAloD0MITdpU3SOwbkCUhpRSlGgVTWMBaBZHQJmVKtuDSPV1fZQoaAZoCWgPQwjj4T0Hlo9uQJSGlFKUaBVL72gWR0CZlep6yB07dX2UKGgGaAloD0MI8KKvIM1RcUCUhpRSlGgVTQgBaBZHQJmWHPnjhk11fZQoaAZoCWgPQwivQPSkzNdvQJSGlFKUaBVL9GgWR0CZliRGMGX5dX2UKGgGaAloD0MI24mSkAhockCUhpRSlGgVTQQBaBZHQJmWNqKxcFB1fZQoaAZoCWgPQwjLaU/JuTNwQJSGlFKUaBVNDwFoFkdAmZb4iTt9hXV9lChoBmgJaA9DCBx79lxmV3FAlIaUUpRoFUvsaBZHQJmXW0fHPu51fZQoaAZoCWgPQwjAWUqWk09vQJSGlFKUaBVNBAFoFkdAmZg8EvCdjHV9lChoBmgJaA9DCISaIVUU0W9AlIaUUpRoFUv1aBZHQJmYmSjgydp1fZQoaAZoCWgPQwjxf0dUaC5wQJSGlFKUaBVL5GgWR0CZmSVENOM3dX2UKGgGaAloD0MIKqvpeqJ/ckCUhpRSlGgVTSYBaBZHQJmZnxvvSc91fZQoaAZoCWgPQwghzVg0XU5wQJSGlFKUaBVNJAFoFkdAmZmfJaJQ+HV9lChoBmgJaA9DCGyTisaagnFAlIaUUpRoFUvbaBZHQJmZyrlvIfd1fZQoaAZoCWgPQwhQjgJEgdNxQJSGlFKUaBVNWQFoFkdAmZqJjUd7wHV9lChoBmgJaA9DCK5nCMfsIXJAlIaUUpRoFUvkaBZHQJmbMHs1KoR1fZQoaAZoCWgPQwiWmGclbaFyQJSGlFKUaBVL7GgWR0CZm1dZ7ojfdX2UKGgGaAloD0MIUMjO29jhcECUhpRSlGgVS/loFkdAmZulO0svqXV9lChoBmgJaA9DCESi0LIuFnFAlIaUUpRoFUvdaBZHQJmuln6Eal11fZQoaAZoCWgPQwhpOGVuPktyQJSGlFKUaBVL6mgWR0CZrswD/2kBdX2UKGgGaAloD0MIdQEvMyy2cECUhpRSlGgVS+5oFkdAma8/YvnKXHV9lChoBmgJaA9DCEbrqGrCwnJAlIaUUpRoFU0XAWgWR0CZsHbTtsvadX2UKGgGaAloD0MIzEOmfAj9bUCUhpRSlGgVTR0BaBZHQJmx917pmmN1fZQoaAZoCWgPQwh/iXjrfBtzQJSGlFKUaBVNDwFoFkdAmbIJS3solXV9lChoBmgJaA9DCKg1zTtOYnNAlIaUUpRoFU0HAWgWR0CZsvPZIxxldX2UKGgGaAloD0MIGt1B7AwzcECUhpRSlGgVS/FoFkdAmbNeafBeonV9lChoBmgJaA9DCOnRVE+mDHJAlIaUUpRoFUvnaBZHQJmzn6sQumJ1fZQoaAZoCWgPQwhuTiUDANdxQJSGlFKUaBVL7GgWR0CZs80lJHy3dX2UKGgGaAloD0MIQ+T09bytcUCUhpRSlGgVTR4BaBZHQJm0M29+PR11fZQoaAZoCWgPQwiifEELSclxQJSGlFKUaBVNHgFoFkdAmbXieZof0XV9lChoBmgJaA9DCDj27LkMgnFAlIaUUpRoFU0FAWgWR0CZthQaaTfSdX2UKGgGaAloD0MIj4zV5v8TbkCUhpRSlGgVS/FoFkdAmbb+E7GNrHV9lChoBmgJaA9DCABV3LgFzHJAlIaUUpRoFU0GAWgWR0CZtxt5UtI1dX2UKGgGaAloD0MIIa6cvXO/cUCUhpRSlGgVTQABaBZHQJm3HDNyHVR1fZQoaAZoCWgPQwikNnFyvxZwQJSGlFKUaBVL7mgWR0CZtzG/N7jUdX2UKGgGaAloD0MI8umxLYOrc0CUhpRSlGgVS/1oFkdAmbfzM3ZPEnV9lChoBmgJaA9DCE4mbhVEa3JAlIaUUpRoFU0KAWgWR0CZuvD/2kBTdX2UKGgGaAloD0MI6pWyDHH1cECUhpRSlGgVTTwBaBZHQJm7f2USqVB1fZQoaAZoCWgPQwhA9nr3B5RyQJSGlFKUaBVL+GgWR0CZu+uez2OAdX2UKGgGaAloD0MIHERrRZujU0CUhpRSlGgVS5hoFkdAmbyLFbVz63V9lChoBmgJaA9DCA/wpIWL43BAlIaUUpRoFU0ZAWgWR0CZvU+Vkc0cdX2UKGgGaAloD0MIjPZ4IR0cckCUhpRSlGgVTRcBaBZHQJm+O/TLGJh1fZQoaAZoCWgPQwi0rWadsShwQJSGlFKUaBVNDAFoFkdAmb481CPZI3V9lChoBmgJaA9DCNOjqZ5MhnFAlIaUUpRoFU0cAWgWR0CZvyFCswL3dX2UKGgGaAloD0MI++b+6rHzckCUhpRSlGgVTTQBaBZHQJnA3/5tWMl1fZQoaAZoCWgPQwiAKJgxhTRxQJSGlFKUaBVNTQFoFkdAmcFqcEvCdnV9lChoBmgJaA9DCNIcWfll7nJAlIaUUpRoFU0JAWgWR0CZwg9IPK+0dX2UKGgGaAloD0MIizcyj/wob0CUhpRSlGgVTToBaBZHQJnCi/vfCQ91fZQoaAZoCWgPQwgLJv4o6opxQJSGlFKUaBVNCwFoFkdAmcLFkH2RJXV9lChoBmgJaA9DCHvAPGTKRHNAlIaUUpRoFU0pAWgWR0CZwucs189fdX2UKGgGaAloD0MIGHlZEwuOb0CUhpRSlGgVTSwBaBZHQJnDEJng5zZ1fZQoaAZoCWgPQwgxtDo5Q8tuQJSGlFKUaBVNTwFoFkdAmcP7jghr33V9lChoBmgJaA9DCDf8brqlh3BAlIaUUpRoFU0AAWgWR0CZxJTKT0QLdX2UKGgGaAloD0MI/OHnv4fmb0CUhpRSlGgVTQIBaBZHQJnFYtCiRGN1fZQoaAZoCWgPQwjOp45Vyl9vQJSGlFKUaBVNNQFoFkdAmcW9Jrcj7nV9lChoBmgJaA9DCDS77q3ItXJAlIaUUpRoFU0FAWgWR0CZxqTRplBhdX2UKGgGaAloD0MI/Wt55fpfb0CUhpRSlGgVS+9oFkdAmcas94eLenV9lChoBmgJaA9DCFjjbDrC23JAlIaUUpRoFU1CAWgWR0CZxr/i5uqFdX2UKGgGaAloD0MIgosVNZjZbkCUhpRSlGgVTSgBaBZHQJnG+gCfYjB1fZQoaAZoCWgPQwiz8PW1Lm5uQJSGlFKUaBVL7mgWR0CZx7EcbR4RdX2UKGgGaAloD0MIIR/0bFaNbkCUhpRSlGgVTUkBaBZHQJnIZAbADaJ1fZQoaAZoCWgPQwjiWu1hr69vQJSGlFKUaBVL4WgWR0CZyOq5sj3VdX2UKGgGaAloD0MIdm9FYkL1cUCUhpRSlGgVS/BoFkdAmckqo2n89HV9lChoBmgJaA9DCDunWaBdzXBAlIaUUpRoFU0XAWgWR0CZyTIsiB5HdX2UKGgGaAloD0MIdxN80/R+bkCUhpRSlGgVTRUBaBZHQJnJrqt5le51fZQoaAZoCWgPQwiPOc/Y19lxQJSGlFKUaBVNFgFoFkdAmcpR7RfF73V9lChoBmgJaA9DCCr+74hKV3JAlIaUUpRoFU0WAWgWR0CZynU5MlC1dX2UKGgGaAloD0MIADYgQhx3c0CUhpRSlGgVS/JoFkdAmcr49xIatXV9lChoBmgJaA9DCMr9DkVBRnJAlIaUUpRoFUv+aBZHQJnMC2SdOIt1fZQoaAZoCWgPQwiPxTap6ItvQJSGlFKUaBVL/2gWR0CZzGWuoxYadX2UKGgGaAloD0MIWABTBs56ckCUhpRSlGgVS/NoFkdAmczxaouPFXV9lChoBmgJaA9DCCiCOA+njnBAlIaUUpRoFUv2aBZHQJnNHRv3rUt1fZQoaAZoCWgPQwhZbmk1pAZyQJSGlFKUaBVL+mgWR0CZzSacI7eVdX2UKGgGaAloD0MIt9RBXg9gckCUhpRSlGgVTVwBaBZHQJnNN1V5rxl1fZQoaAZoCWgPQwh9dVWgFn9xQJSGlFKUaBVNCwFoFkdAmc3RDkU9IXV9lChoBmgJaA9DCIfD0sBPx3FAlIaUUpRoFUvmaBZHQJnOSxjawll1fZQoaAZoCWgPQwgHP3EAvSdxQJSGlFKUaBVL52gWR0CZzwq4H5aedX2UKGgGaAloD0MI4Ec17Hf4bECUhpRSlGgVS/NoFkdAmc9WRmseXHV9lChoBmgJaA9DCGB2Tx4WHHJAlIaUUpRoFU0BAWgWR0CZz3qY7aIvdX2UKGgGaAloD0MINA71u7B3cECUhpRSlGgVTTYBaBZHQJnPrr8iwB51ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 252,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7880ce598864b13b4f29b9832b936218eeba3cd3f1986afffe9295674dad65bd
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1831d89ef3bcd69c3948e1d5fe6ad902c40f23400b758b3e636ecec049f95d9e
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (231 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.04763829980595, "std_reward": 16.66885762729487, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-06T09:52:38.148298"}