--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: wav2vec2-vi5 results: [] --- # wav2vec2-vi5 This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-large-vi-vlsp2020](https://huggingface.co/nguyenvulebinh/wav2vec2-large-vi-vlsp2020) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1632 - Wer: 0.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1279 | 0.13 | 100 | 0.1495 | 0.0691 | | 0.1067 | 0.27 | 200 | 0.1407 | 0.0656 | | 0.1013 | 0.4 | 300 | 0.1352 | 0.0654 | | 0.1282 | 0.53 | 400 | 0.1468 | 0.0705 | | 0.1117 | 0.67 | 500 | 0.1658 | 0.0804 | | 0.1173 | 0.8 | 600 | 0.1485 | 0.0753 | | 0.1 | 0.94 | 700 | 0.1418 | 0.0699 | | 0.1029 | 1.07 | 800 | 0.1523 | 0.0715 | | 0.0823 | 1.2 | 900 | 0.1597 | 0.0731 | | 0.0893 | 1.34 | 1000 | 0.1441 | 0.0688 | | 0.0822 | 1.47 | 1100 | 0.1580 | 0.0711 | | 0.1077 | 1.6 | 1200 | 0.1664 | 0.0832 | | 0.0988 | 1.74 | 1300 | 0.1626 | 0.0744 | | 0.0777 | 1.87 | 1400 | 0.1498 | 0.0705 | | 0.0849 | 2.01 | 1500 | 0.1581 | 0.0711 | | 0.0647 | 2.14 | 1600 | 0.1636 | 0.0729 | | 0.0638 | 2.27 | 1700 | 0.1590 | 0.0750 | | 0.0674 | 2.41 | 1800 | 0.1627 | 0.0755 | | 0.0644 | 2.54 | 1900 | 0.1576 | 0.0746 | | 0.0666 | 2.67 | 2000 | 0.1569 | 0.0704 | | 0.0647 | 2.81 | 2100 | 0.1601 | 0.0693 | | 0.0769 | 2.94 | 2200 | 0.1595 | 0.0680 | | 0.0585 | 3.07 | 2300 | 0.1591 | 0.0718 | | 0.0515 | 3.21 | 2400 | 0.1628 | 0.0714 | | 0.068 | 3.34 | 2500 | 0.1549 | 0.0704 | | 0.0473 | 3.48 | 2600 | 0.1618 | 0.0694 | | 0.0545 | 3.61 | 2700 | 0.1539 | 0.0685 | | 0.049 | 3.74 | 2800 | 0.1546 | 0.0698 | | 0.0538 | 3.88 | 2900 | 0.1507 | 0.0698 | | 0.0452 | 4.01 | 3000 | 0.1516 | 0.0702 | | 0.0398 | 4.14 | 3100 | 0.1604 | 0.0723 | | 0.0539 | 4.28 | 3200 | 0.1587 | 0.0713 | | 0.0443 | 4.41 | 3300 | 0.1607 | 0.0718 | | 0.0405 | 4.55 | 3400 | 0.1626 | 0.0709 | | 0.038 | 4.68 | 3500 | 0.1623 | 0.0707 | | 0.0388 | 4.81 | 3600 | 0.1621 | 0.0726 | | 0.0418 | 4.95 | 3700 | 0.1632 | 0.0714 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1