qfrodicio commited on
Commit
6f1ad2d
1 Parent(s): b03d5a9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -13
README.md CHANGED
@@ -3,10 +3,10 @@ license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  metrics:
 
6
  - precision
7
  - recall
8
  - f1
9
- - accuracy
10
  model-index:
11
  - name: bert-finetuned-gesture-prediction-9-classes
12
  results: []
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.6739
23
- - Precision: 0.6215
24
- - Recall: 0.7431
25
- - F1: 0.6769
26
- - Accuracy: 0.8366
27
 
28
  ## Model description
29
 
@@ -42,21 +42,28 @@ More information needed
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 9.177375858742942e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 16
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - num_epochs: 3
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | 1.14 | 1.0 | 87 | 0.7099 | 0.5 | 0.6526 | 0.5662 | 0.8024 |
58
- | 0.4501 | 2.0 | 174 | 0.6451 | 0.5944 | 0.7168 | 0.6499 | 0.8271 |
59
- | 0.1964 | 3.0 | 261 | 0.6739 | 0.6215 | 0.7431 | 0.6769 | 0.8366 |
 
 
 
 
 
 
 
60
 
61
 
62
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
6
+ - accuracy
7
  - precision
8
  - recall
9
  - f1
 
10
  model-index:
11
  - name: bert-finetuned-gesture-prediction-9-classes
12
  results: []
 
19
 
20
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.8391
23
+ - Accuracy: 0.8443
24
+ - Precision: 0.8461
25
+ - Recall: 0.8443
26
+ - F1: 0.8422
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 16
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 1.6408 | 1.0 | 87 | 1.0168 | 0.7110 | 0.6825 | 0.7110 | 0.6559 |
58
+ | 0.7629 | 2.0 | 174 | 0.7777 | 0.7977 | 0.7863 | 0.7977 | 0.7856 |
59
+ | 0.4526 | 3.0 | 261 | 0.6951 | 0.8263 | 0.8276 | 0.8263 | 0.8199 |
60
+ | 0.285 | 4.0 | 348 | 0.6948 | 0.8332 | 0.8352 | 0.8332 | 0.8311 |
61
+ | 0.1788 | 5.0 | 435 | 0.7196 | 0.8277 | 0.8296 | 0.8277 | 0.8260 |
62
+ | 0.1246 | 6.0 | 522 | 0.7677 | 0.8314 | 0.8357 | 0.8314 | 0.8284 |
63
+ | 0.0866 | 7.0 | 609 | 0.7865 | 0.8407 | 0.8433 | 0.8407 | 0.8391 |
64
+ | 0.0629 | 8.0 | 696 | 0.8168 | 0.8435 | 0.8457 | 0.8435 | 0.8420 |
65
+ | 0.0489 | 9.0 | 783 | 0.8292 | 0.8417 | 0.8439 | 0.8417 | 0.8395 |
66
+ | 0.0398 | 10.0 | 870 | 0.8391 | 0.8443 | 0.8461 | 0.8443 | 0.8422 |
67
 
68
 
69
  ### Framework versions