update model card README.md
Browse files
README.md
CHANGED
@@ -3,10 +3,10 @@ license: mit
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
|
|
6 |
- precision
|
7 |
- recall
|
8 |
- f1
|
9 |
-
- accuracy
|
10 |
model-index:
|
11 |
- name: roberta-finetuned-gesture-prediction-21-classes
|
12 |
results: []
|
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -42,22 +42,28 @@ More information needed
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
-
- learning_rate:
|
46 |
- train_batch_size: 16
|
47 |
- eval_batch_size: 16
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|
56 |
-
|
57 |
-
|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
6 |
+
- accuracy
|
7 |
- precision
|
8 |
- recall
|
9 |
- f1
|
|
|
10 |
model-index:
|
11 |
- name: roberta-finetuned-gesture-prediction-21-classes
|
12 |
results: []
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.9312
|
23 |
+
- Accuracy: 0.8163
|
24 |
+
- Precision: 0.8090
|
25 |
+
- Recall: 0.8163
|
26 |
+
- F1: 0.8108
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
- train_batch_size: 16
|
47 |
- eval_batch_size: 16
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 2.2472 | 1.0 | 104 | 1.4263 | 0.7364 | 0.6666 | 0.7364 | 0.6921 |
|
58 |
+
| 1.2677 | 2.0 | 208 | 1.0547 | 0.7888 | 0.7581 | 0.7888 | 0.7638 |
|
59 |
+
| 0.8676 | 3.0 | 312 | 0.9315 | 0.7963 | 0.7775 | 0.7963 | 0.7791 |
|
60 |
+
| 0.6407 | 4.0 | 416 | 0.9022 | 0.8102 | 0.8012 | 0.8102 | 0.7995 |
|
61 |
+
| 0.4926 | 5.0 | 520 | 0.8994 | 0.8120 | 0.8080 | 0.8120 | 0.8016 |
|
62 |
+
| 0.3754 | 6.0 | 624 | 0.9018 | 0.8069 | 0.7999 | 0.8069 | 0.8002 |
|
63 |
+
| 0.3037 | 7.0 | 728 | 0.9048 | 0.8131 | 0.8055 | 0.8131 | 0.8060 |
|
64 |
+
| 0.2499 | 8.0 | 832 | 0.9030 | 0.8161 | 0.8119 | 0.8161 | 0.8117 |
|
65 |
+
| 0.2155 | 9.0 | 936 | 0.9279 | 0.8160 | 0.8088 | 0.8160 | 0.8106 |
|
66 |
+
| 0.2062 | 10.0 | 1040 | 0.9312 | 0.8163 | 0.8090 | 0.8163 | 0.8108 |
|
67 |
|
68 |
|
69 |
### Framework versions
|