--- license: mit tags: - generated_from_trainer datasets: qfrodicio/gesture-prediction-21-classes metrics: - accuracy - precision - recall - f1 base_model: roberta-base model-index: - name: roberta-finetuned-gesture-prediction-21-classes results: [] --- # roberta-finetuned-gesture-prediction-21-classes This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7782 - Accuracy: 0.8185 - Precision: 0.8116 - Recall: 0.8185 - F1: 0.8072 It achieves the following results on the evaluation set: - Loss: 0.8142 - Accuracy: 0.8154 - Precision: 0.8189 - Recall: 0.8154 - F1: 0.8125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The model has been trained with the qfrodicio/gesture-prediction-21-classes dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - weight_decay: 0.01 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.2147 | 1.0 | 104 | 1.3857 | 0.7406 | 0.6887 | 0.7406 | 0.7013 | | 1.2291 | 2.0 | 208 | 0.9750 | 0.7907 | 0.7597 | 0.7907 | 0.7618 | | 0.836 | 3.0 | 312 | 0.8609 | 0.8028 | 0.7813 | 0.8028 | 0.7829 | | 0.6129 | 4.0 | 416 | 0.8059 | 0.8078 | 0.8030 | 0.8078 | 0.7973 | | 0.4747 | 5.0 | 520 | 0.7782 | 0.8185 | 0.8116 | 0.8185 | 0.8072 | | 0.3639 | 6.0 | 624 | 0.7825 | 0.8175 | 0.8170 | 0.8175 | 0.8108 | | 0.295 | 7.0 | 728 | 0.7913 | 0.8365 | 0.8283 | 0.8365 | 0.8280 | | 0.236 | 8.0 | 832 | 0.7619 | 0.8273 | 0.8230 | 0.8273 | 0.8229 | | 0.1989 | 9.0 | 936 | 0.7880 | 0.8309 | 0.8258 | 0.8309 | 0.8261 | | 0.1879 | 10.0 | 1040 | 0.7915 | 0.8314 | 0.8247 | 0.8314 | 0.8264 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2