File size: 3,334 Bytes
fa74e2c fe1eb96 fa74e2c fe1eb96 fa74e2c fe1eb96 fa74e2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: MMG/mlm-spanish-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: roberta-finetuned-intention-prediction-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-intention-prediction-es
This model is a fine-tuned version of [MMG/mlm-spanish-roberta-base](https://huggingface.co/MMG/mlm-spanish-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9097
- Accuracy: 0.6918
- Precision: 0.6953
- Recall: 0.6918
- F1: 0.6848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 2.2985 | 1.0 | 102 | 1.7435 | 0.4970 | 0.4378 | 0.4970 | 0.4215 |
| 1.3399 | 2.0 | 204 | 1.4205 | 0.5828 | 0.5872 | 0.5828 | 0.5624 |
| 0.8893 | 3.0 | 306 | 1.2699 | 0.6393 | 0.6276 | 0.6393 | 0.6192 |
| 0.5691 | 4.0 | 408 | 1.3327 | 0.6515 | 0.6604 | 0.6515 | 0.6417 |
| 0.3837 | 5.0 | 510 | 1.3836 | 0.6592 | 0.6710 | 0.6592 | 0.6528 |
| 0.2543 | 6.0 | 612 | 1.4253 | 0.6641 | 0.6703 | 0.6641 | 0.6528 |
| 0.1669 | 7.0 | 714 | 1.5317 | 0.6650 | 0.6795 | 0.6650 | 0.6546 |
| 0.1139 | 8.0 | 816 | 1.5939 | 0.6725 | 0.6754 | 0.6725 | 0.6615 |
| 0.0805 | 9.0 | 918 | 1.6987 | 0.6594 | 0.6696 | 0.6594 | 0.6518 |
| 0.0578 | 10.0 | 1020 | 1.6960 | 0.6793 | 0.6782 | 0.6793 | 0.6690 |
| 0.0374 | 11.0 | 1122 | 1.7590 | 0.6824 | 0.6877 | 0.6824 | 0.6729 |
| 0.03 | 12.0 | 1224 | 1.7425 | 0.6842 | 0.6859 | 0.6842 | 0.6785 |
| 0.0183 | 13.0 | 1326 | 1.8165 | 0.6830 | 0.6846 | 0.6830 | 0.6774 |
| 0.0152 | 14.0 | 1428 | 1.8348 | 0.6866 | 0.6927 | 0.6866 | 0.6799 |
| 0.0109 | 15.0 | 1530 | 1.8562 | 0.6940 | 0.6967 | 0.6940 | 0.6855 |
| 0.0097 | 16.0 | 1632 | 1.8766 | 0.6889 | 0.6947 | 0.6889 | 0.6833 |
| 0.0073 | 17.0 | 1734 | 1.8745 | 0.6920 | 0.6948 | 0.6920 | 0.6851 |
| 0.0062 | 18.0 | 1836 | 1.8944 | 0.6895 | 0.6919 | 0.6895 | 0.6825 |
| 0.0057 | 19.0 | 1938 | 1.9103 | 0.6936 | 0.6984 | 0.6936 | 0.6867 |
| 0.0052 | 20.0 | 2040 | 1.9097 | 0.6918 | 0.6953 | 0.6918 | 0.6848 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|