Quentin Gallouédec commited on
Commit
257d83f
1 Parent(s): 18e254a

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartpoleSparseDMC-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartpoleSparseDMC-v0
16
+ type: CartpoleSparseDMC-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1000.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **CartpoleSparseDMC-v0**
25
+ This is a trained model of a **DDPG** agent playing **CartpoleSparseDMC-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env CartpoleSparseDMC-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env CartpoleSparseDMC-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env CartpoleSparseDMC-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env CartpoleSparseDMC-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env CartpoleSparseDMC-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env CartpoleSparseDMC-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('gamma', 0.99),
67
+ ('learning_rate', 0.0001),
68
+ ('n_timesteps', 1000000.0),
69
+ ('noise_std', 0.3),
70
+ ('noise_type', 'ornstein-uhlenbeck'),
71
+ ('policy', 'MlpPolicy'),
72
+ ('policy_kwargs',
73
+ 'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
74
+ ('normalize', False)])
75
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - CartpoleSparseDMC-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1516962314
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/CartpoleSparseDMC-v0__ddpg__1516962314__1673811016
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - qgallouedec
78
+ - - wandb_project_name
79
+ - dmc
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - gamma
5
+ - 0.99
6
+ - - learning_rate
7
+ - 0.0001
8
+ - - n_timesteps
9
+ - 1000000.0
10
+ - - noise_std
11
+ - 0.3
12
+ - - noise_type
13
+ - ornstein-uhlenbeck
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
ddpg-CartpoleSparseDMC-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ad3d8791d843fc0d65ae0d5c25f0c41df958ef56c7d706fb2ee58481371ef3
3
+ size 3011992
ddpg-CartpoleSparseDMC-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ddpg-CartpoleSparseDMC-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68a55cec567562983369724907a094b80aec7bd7aafd3b4028da8ee5232f163b
3
+ size 502319
ddpg-CartpoleSparseDMC-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c88e673bdf3d67fe70cb939e68b99f4139787d0269669adc1343535db418852
3
+ size 991855
ddpg-CartpoleSparseDMC-v0/data ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x132b98280>",
8
+ "_build": "<function TD3Policy._build at 0x132b98310>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x132b983a0>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x132b98430>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x132b984c0>",
12
+ "forward": "<function TD3Policy.forward at 0x132b98550>",
13
+ "_predict": "<function TD3Policy._predict at 0x132b985e0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x132b98670>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x132b92c40>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": {
21
+ "pi": [
22
+ 300,
23
+ 200
24
+ ],
25
+ "qf": [
26
+ 400,
27
+ 300
28
+ ]
29
+ },
30
+ "n_critics": 1
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVMgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/5RoC0sFhZSMAUOUdJRSlIwEaGlnaJRoEyiWFAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAf5RoC0sFhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgUAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYFAAAAAAAAAAAAAAAAlGgiSwWFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgJFNmB29Mz4YBt7o9pVzyDhXe61yTXHv67KnpfJ1E/PBH/2cj7KDlauAIRbSVAOinkN9zPyBz27Su+lSzI3uWuGnTmR1lrsBz8W/UbWr14pDeLZug896m7Vwlmp9KbzrDAmOFS1z1hkmOX4COodrtRWi+bx3JSZOpp/F8PlvLJMu+xw6oDubTjJmjT48SaLiSlt0Yv5dUczlHj1VVorq81qGIQI4WwYMacGeisqUDZVH0a27bpEKlvinLVIdyiktzT9NvPA1s1Am8Tyg4Z4wKY8RibkJiRFsKHVd8V05LoIw/mPoMPeu4wYy29Tg0CCbBnj5ewy3bK6Vz9NtsxzlXqFo2Y5vIvOl1vpc1a46r+oNW1qX46+A4NNytCly9MiLIPDWzf3xQdkCNZXpiZxvEkToqadYC+FCaNu0SqFdoK/qeeZELqHeC4NV6iD+yqIMGjGCx0iSJW6GIrfRgiYaLhw3AwoOxIUsThdvr50iAmVge9gnC2OOTchkaqlxO2m7EzpTWHuQZb8m2D5rIO33IXtUp6oeedR4XcWEJsWkC4wkjYvY+5zU3hxWzIUPajPg8AAwaUg4tZ4dPfwdTmM1QuZzznRpQ9TKeOSwwZWOE0hbwWM7PW9kZrNSe+pWVYmsVr3CLcwdIxflxwo6lXPRl/Jk1iTOd1VgAfTLIB93eAWLQ4f83YENLIqobsGkc4mR0Q+/m4v/WFRVX44OpgrDfzuAcjIw2CvccnzTkWXVC0ZrKCbA5pe/gjlNBMvJTBBA3aPObuEumGtYpEBNe2FlYEs1rW3KIDA9fifPclSo0KmUz+kJvsLRTBrfIV5n7ntXRmnUqi33zWKLCPR0RNVbUgNA42060q8KnYR16Ch0/3dqXV8oCLdftCKUrluZzAAUvoq7E50NMWA+K74sb9VzplCsRygQMVLrwan3D34bH2zaFPynqvUncxfWKfmcS6FwLlqG3DfL4djRpQPkuTXBt4UEW9bqO7giTOw/Yl4cF3XB2TlCxTQ9zYaKlADgQ0mXNKd42tZCn/qtdmiFXHQsHIPRRlx66vBw4mJWMKe+xzr7i6kNzhEe359B7zV/n8qX8JGAfq25QrSC8H0M7NnIxnEx4A2nsoOvHJrFptcdBbG8yqZOhR91TuP47C4q9L1J69Dnvu16u12pFL1MqMFAIgxCQp7MAKo5i/E86g2FmHpABWnDpDxW+B0V7wCtH/ZtKPD4cAVBbc1shiq5uTh+GmmK6xEz3nKdRzi7PZIiiW77CqarzwK/0tXbUtx60Fzx2qWkURCzNTzGf7CRmT+9cOYI/gsxDyg+v4cL2drosbflknxP0jXGrKwXYlR8fskdFzyeCvb5pqzp02RdVioxKLFDiisJVd9FWl4EDlhvtahdXbjcQAgy05s0tMoIh/363qYqgpWCR7k76INg2u1znKgqnX174s1A8OKgCiE2EcLkqPPZFQ/UniTUxhUmVDolowCQE5xD6EJXH1ctx9iPN0HtGog31RYhHuB69X6FOg+ZRhBbXX3OJgXfSij+2cnMw4oN4Uig4htC0YeLT9IDTRqGMy3e+LoQKvzTlfEv4guqvLEWLXUh4eb0spF7QjOGDlpEpT3ataIhdGiKbFnFn6GJI1OKanTJl5KrNFjk0YrXd8EU/6PhTwnfyFcGMjYJV03xyY1dEMs4m43H/PNZ3QpUpXol9C+njAFmNLXWrKRTEOTsCJcQc4Fd3rC8+Dch553AR6MU5QQmAslsUM9zfX0eI5SFeP/jAd+ha54Fw6ksGmZ+M4iaBhk63JhRtkVQuGGTrLL75cKHcN2HnlPexxCNUuPtRSD+BqC+OXP4P9qxsKhT7TX0xk3Uuu0895xZFG+4ya1yXTDfM9qJLJiZPLzu7TMR+VCGB4x8HEt91qwhzl7AOtQWrQ1JVPBKZ3QnMdY4AuXj7GvRCRjJdDQR/urd+23RvL3UfiRbw/gvHxWaSmMPXF7fJqi32VrkKZLN6dsxuV5+P1xf4j9TKhE/PwFDLmHoqJBNxOJJqPOUYqCFjv2TWVeLZleucl3Zv9pKpadI+oQ4UHDQRAOIwo+xZTDyp0s3PYVG4DuvVj8pctii4ifMKHgKYh9tdyGfDIf+2GLRvVhdHW2glgFOO5jDPSu0mDHyIiDdqkkwBX/fU2wb+AL2tiU2t3Aeu6h3stNuwT82w46bdKrTPOTGMXv+Qn20HhlMYHaEdv3x7SLgvDFuNaq6Ur8fpw1KIL/rpbi4ejEd3MAJUyDA6RBvGv+sbbafcZKXx6/JVKl/7iYRuWbmDyMC8T6x5bM39BZeolZHCjCxJoYQphObpbpcjhxVDxH3BvXmIwClIK/cqCdIteJhwhTxX7L0Ge7nDpBuUkv8BPCFKWL5pzaPzWGi604FHfc9K4M43SVconJZsdpEgdxS5GCVA1PYVorMaLn1n03mjxgXK/k1sog1rAUVsiho7dOtGeaRNM5LEHUL5eJmg7rBszVtorflF7vaQz+Qh29O7KWfzP8woYrosHvN3UBhdLAkeHlZyUfGEjROXTpC/QAYeFhOGRwfqKX91nRmmaOWdQxF32/klDzNkdf0gAu6mML3n3EWy+q3q6IjC/fq9gMfoDDd67JVFmha9W1Sjcv2ohflKFvQqtgDiMz4iezfq7FkxAHEB56/gAvIYrAn4gQRJxbf4oPulNjyd4U0CbnMzp1x0XzC/heuoI+t/avDbrxhLjYryRUACeRBHHV1GlaQIoROvPJbFTEaOyYBsGSGAMTUVuTWPZMixZTzLA12QAC0psveFDRw/1qU6GwSGXQLrp3zfxp1FTB0Vc5mw5v+KG7GKF0OgBWiythWyrMKjeV9AIfgxwSz4bSYE/FgWFRPhimZPVbYPE5QEF0u9QTGLWBj7khtMYh7WmM/1BSrK7acEYlRw/yR46lAD6G+iwi3qUt1EbZT2St+jgk7AwOSOsa4OPcH2Mo4Ik/gddG7C712FnWjkwTDHKnay7s2z38FobcUOUKTUqeESA+2IlkTXdY7Nw7RtocL1HYmfStdzsANblL6FAwiP8kPTycPkzt/rHDj6aGJVCSyaeXh6CSXKHUrvYrH/WJ3YYfYz8nnNxfR4LxwiEZTRaDGALOM3a1Js0As85uk4fQ8YjSTb9oIV7cVOSJZD+c/HHqSLOnojah+TIBN1CAT/2fxWKc21hIstjYvfgVyhnEi27yP4thAXAbJlxJcATntlKmNGdai54y43gc1xLAQzm23NfiHgfxLUHHbT10GOgc7Ug6pMib/1hIOLcGGLbVkm39Uy75Eyo6wEeX0IxAKTdsGW4jyS7Mbj8jLeiHAHDHXcVyblGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 5
38
+ ],
39
+ "low": "[-inf -inf -inf -inf -inf]",
40
+ "high": "[inf inf inf inf inf]",
41
+ "bounded_below": "[False False False False False]",
42
+ "bounded_above": "[False False False False False]",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.box.Box'>",
47
+ ":serialized:": "gAWVCgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgLSwGFlIwBQ5R0lFKUjARoaWdolGgTKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYBAAAAAAAAAAGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYBAAAAAAAAAAGUaCJLAYWUaBZ0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEyiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiTXAChZRoFnSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
48
+ "dtype": "float32",
49
+ "_shape": [
50
+ 1
51
+ ],
52
+ "low": "[-1.]",
53
+ "high": "[1.]",
54
+ "bounded_below": "[ True]",
55
+ "bounded_above": "[ True]",
56
+ "_np_random": "RandomState(MT19937)"
57
+ },
58
+ "n_envs": 1,
59
+ "num_timesteps": 1000000,
60
+ "_total_timesteps": 1000000,
61
+ "_num_timesteps_at_start": 0,
62
+ "seed": 0,
63
+ "action_noise": {
64
+ ":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
65
+ ":serialized:": "gAWVVQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlIwGX3NpZ21hlGgJKJYIAAAAAAAAADMzMzMzM9M/lGgQSwGFlGgUdJRSlIwDX2R0lEc/hHrhR64Ue4wNaW5pdGlhbF9ub2lzZZROjApub2lzZV9wcmV2lGgJKJYIAAAAAAAAAAAAAAAAAAAAlGgQSwGFlGgUdJRSlHViLg==",
66
+ "_theta": 0.15,
67
+ "_mu": "[0.]",
68
+ "_sigma": "[0.3]",
69
+ "_dt": 0.01,
70
+ "initial_noise": null,
71
+ "noise_prev": "[0.]"
72
+ },
73
+ "start_time": 1673811020944898084,
74
+ "learning_rate": {
75
+ ":type:": "<class 'function'>",
76
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
77
+ },
78
+ "tensorboard_log": "runs/CartpoleSparseDMC-v0__ddpg__1516962314__1673811016/CartpoleSparseDMC-v0",
79
+ "lr_schedule": {
80
+ ":type:": "<class 'function'>",
81
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
82
+ },
83
+ "_last_obs": null,
84
+ "_last_episode_starts": {
85
+ ":type:": "<class 'numpy.ndarray'>",
86
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
87
+ },
88
+ "_last_original_obs": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gAWViQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAHQslz5ZuH8/NXs/vcDVkr7YUww+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwWGlIwBQ5R0lFKULg=="
91
+ },
92
+ "_episode_num": 1000,
93
+ "use_sde": false,
94
+ "sde_sample_freq": -1,
95
+ "_current_progress_remaining": 0.0,
96
+ "ep_info_buffer": {
97
+ ":type:": "<class 'collections.deque'>",
98
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAAAAAABQhECUhpRSlIwBbJRN6AOMAXSUR0DH2vyGahHtdX2UKGgGaAloD0MIAAAAAABQhkCUhpRSlGgVTegDaBZHQMfhmqqn3td1fZQoaAZoCWgPQwgAAAAAAGBiQJSGlFKUaBVN6ANoFkdAx+hxk5p8GHV9lChoBmgJaA9DCAAAAAAAiIdAlIaUUpRoFU3oA2gWR0DH7t8BCD28dX2UKGgGaAloD0MIAAAAAABQjUCUhpRSlGgVTegDaBZHQMf06ZpztC11fZQoaAZoCWgPQwgAAAAAAKCKQJSGlFKUaBVN6ANoFkdAx/tMtsenynV9lChoBmgJaA9DCAAAAAAAAIRAlIaUUpRoFU3oA2gWR0DIAbWHWSU1dX2UKGgGaAloD0MIAAAAAABAj0CUhpRSlGgVTegDaBZHQMgHnieNDMN1fZQoaAZoCWgPQwgAAAAAADCFQJSGlFKUaBVN6ANoFkdAyA6lKZlWfnV9lChoBmgJaA9DCAAAAAAAOI1AlIaUUpRoFU3oA2gWR0DIFbDH+6y0dX2UKGgGaAloD0MIAAAAAABAj0CUhpRSlGgVTegDaBZHQMgcXXmmtQt1fZQoaAZoCWgPQwgAAAAAAECPQJSGlFKUaBVN6ANoFkdAyCNG27Wd3HV9lChoBmgJaA9DCAAAAAAAQI9AlIaUUpRoFU3oA2gWR0DIKl9XeWOZdX2UKGgGaAloD0MIAAAAAAAghECUhpRSlGgVTegDaBZHQMgxbC1y/9J1fZQoaAZoCWgPQwgAAAAAAOiLQJSGlFKUaBVN6ANoFkdAyDgX8MNMG3V9lChoBmgJaA9DCAAAAAAAQI9AlIaUUpRoFU3oA2gWR0DIPqFwo9cKdX2UKGgGaAloD0MIAAAAAACge0CUhpRSlGgVTegDaBZHQMhFEOiN83N1fZQoaAZoCWgPQwgAAAAAAGiCQJSGlFKUaBVN6ANoFkdAyEsjlNDc/XV9lChoBmgJaA9DCAAAAAAAgIxAlIaUUpRoFU3oA2gWR0DIUYXlGPPtdX2UKGgGaAloD0MIAAAAAAC4i0CUhpRSlGgVTegDaBZHQMhX9hRZU1h1fZQoaAZoCWgPQwgAAAAAAECPQJSGlFKUaBVN6ANoFkdAyF5MYfnwHHV9lChoBmgJaA9DCAAAAAAAOIdAlIaUUpRoFU3oA2gWR0DIZVkfvF3qdX2UKGgGaAloD0MIAAAAAAAYgkCUhpRSlGgVTegDaBZHQMhsaFOXVsl1fZQoaAZoCWgPQwgAAAAAAJCBQJSGlFKUaBVN6ANoFkdAyHMPbWVeKXV9lChoBmgJaA9DCAAAAAAAuIpAlIaUUpRoFU3oA2gWR0DIehfIMjNZdX2UKGgGaAloD0MIAAAAAADAXkCUhpRSlGgVTegDaBZHQMiFV+P7vXt1fZQoaAZoCWgPQwgAAAAAAKiDQJSGlFKUaBVN6ANoFkdAyIxnRZ2ZA3V9lChoBmgJaA9DCAAAAAAA0IFAlIaUUpRoFU3oA2gWR0DIkt12V3UydX2UKGgGaAloD0MIAAAAAAAggkCUhpRSlGgVTegDaBZHQMiY71WbPQh1fZQoaAZoCWgPQwgAAAAAAGiIQJSGlFKUaBVN6ANoFkdAyJ9UyEcsDnV9lChoBmgJaA9DCAAAAAAAwGFAlIaUUpRoFU3oA2gWR0DIpcO3azu4dX2UKGgGaAloD0MIAAAAAABAi0CUhpRSlGgVTegDaBZHQMir/0YCQtB1fZQoaAZoCWgPQwgAAAAAAGB9QJSGlFKUaBVN6ANoFkdAyLKcnIhhY3V9lChoBmgJaA9DCAAAAAAAQI9AlIaUUpRoFU3oA2gWR0DIuambutwKdX2UKGgGaAloD0MIAAAAAACYjUCUhpRSlGgVTegDaBZHQMjAuc1Gb1B1fZQoaAZoCWgPQwgAAAAAAOCIQJSGlFKUaBVN6ANoFkdAyMdiLDQ7cXV9lChoBmgJaA9DCAAAAAAAYIhAlIaUUpRoFU3oA2gWR0DIznKlUIcBdX2UKGgGaAloD0MIAAAAAABAjUCUhpRSlGgVTegDaBZHQMjVfTWoWHl1fZQoaAZoCWgPQwgAAAAAAECPQJSGlFKUaBVN6ANoFkdAyNwyGbCrLnV9lChoBmgJaA9DCAAAAAAAUINAlIaUUpRoFU3oA2gWR0DI4uEcU/OddX2UKGgGaAloD0MIAAAAAABwhkCUhpRSlGgVTegDaBZHQMjpWARkEs91fZQoaAZoCWgPQwgAAAAAAECPQJSGlFKUaBVN6ANoFkdAyO9ncnE2pHV9lChoBmgJaA9DCAAAAAAAYIdAlIaUUpRoFU3oA2gWR0DI9eCI7/4qdX2UKGgGaAloD0MIAAAAAABAj0CUhpRSlGgVTegDaBZHQMj8VZCfHxV1fZQoaAZoCWgPQwgAAAAAAECPQJSGlFKUaBVN6ANoFkdAyQKRyimEXnV9lChoBmgJaA9DCAAAAAAAQI9AlIaUUpRoFU3oA2gWR0DJCZ1j0+TvdX2UKGgGaAloD0MIAAAAAABogkCUhpRSlGgVTegDaBZHQMkQt3t8eCF1fZQoaAZoCWgPQwgAAAAAALCMQJSGlFKUaBVN6ANoFkdAyRdukrwvx3V9lChoBmgJaA9DCAAAAAAAQI9AlIaUUpRoFU3oA2gWR0DJHokPxx1gdX2UKGgGaAloD0MIAAAAAABAj0CUhpRSlGgVTegDaBZHQMklpN3OfNB1fZQoaAZoCWgPQwgAAAAAAPiAQJSGlFKUaBVN6ANoFkdAyTDuG47Rv3V9lChoBmgJaA9DCAAAAAAAoI1AlIaUUpRoFU3oA2gWR0DJN3pZU1htdX2UKGgGaAloD0MIAAAAAADAiECUhpRSlGgVTegDaBZHQMk95hbW3Bp1fZQoaAZoCWgPQwgAAAAAAOBwQJSGlFKUaBVN6ANoFkdAyUQj5xiobXV9lChoBmgJaA9DCAAAAAAAMIBAlIaUUpRoFU3oA2gWR0DJSrS7/XGwdX2UKGgGaAloD0MIAAAAAADIg0CUhpRSlGgVTegDaBZHQMlRNd7OVxF1fZQoaAZoCWgPQwgAAAAAAFCFQJSGlFKUaBVN6ANoFkdAyVfBkIX0oXV9lChoBmgJaA9DCAAAAAAAoGRAlIaUUpRoFU3oA2gWR0DJXu0g2ZRbdX2UKGgGaAloD0MIAAAAAAAAYECUhpRSlGgVTegDaBZHQMlmGcFhXsB1fZQoaAZoCWgPQwgAAAAAABB/QJSGlFKUaBVN6ANoFkdAyWziMIeHSHV9lChoBmgJaA9DCAAAAAAAgINAlIaUUpRoFU3oA2gWR0DJdAUADJU6dX2UKGgGaAloD0MIAAAAAACgjECUhpRSlGgVTegDaBZHQMl7IJmukk91fZQoaAZoCWgPQwgAAAAAAGiJQJSGlFKUaBVN6ANoFkdAyYHoFK02L3V9lChoBmgJaA9DCAAAAAAAYHdAlIaUUpRoFU3oA2gWR0DJiK0/Y8MedX2UKGgGaAloD0MIAAAAAACojECUhpRSlGgVTegDaBZHQMmPNC8vmHR1fZQoaAZoCWgPQwgAAAAAAPCKQJSGlFKUaBVN6ANoFkdAyZVtdpItlXV9lChoBmgJaA9DCAAAAAAAyI1AlIaUUpRoFU3oA2gWR0DJnAAKhL5AdX2UKGgGaAloD0MIAAAAAADIhkCUhpRSlGgVTegDaBZHQMmihh/RVp91fZQoaAZoCWgPQwgAAAAAADCAQJSGlFKUaBVN6ANoFkdAyajr2ovSMXV9lChoBmgJaA9DCAAAAAAAgI1AlIaUUpRoFU3oA2gWR0DJsCJa7mMgdX2UKGgGaAloD0MIAAAAAABgZ0CUhpRSlGgVTegDaBZHQMm3XgJb+tN1fZQoaAZoCWgPQwgAAAAAAJiNQJSGlFKUaBVN6ANoFkdAyb4ewu/UOXV9lChoBmgJaA9DCAAAAAAAkIlAlIaUUpRoFU3oA2gWR0DJxU4oVmBfdX2UKGgGaAloD0MIAAAAAABQe0CUhpRSlGgVTegDaBZHQMnMhgNoak11fZQoaAZoCWgPQwgAAAAAAPB8QJSGlFKUaBVN6ANoFkdAydNhCmdiD3V9lChoBmgJaA9DCAAAAAAAGIdAlIaUUpRoFU3oA2gWR0DJ3oPJYDDCdX2UKGgGaAloD0MIAAAAAABYg0CUhpRSlGgVTegDaBZHQMnkuKzZ6D51fZQoaAZoCWgPQwgAAAAAAGB5QJSGlFKUaBVN6ANoFkdAyetOxUvPC3V9lChoBmgJaA9DCAAAAAAAYIFAlIaUUpRoFU3oA2gWR0DJ8dF2V3UydX2UKGgGaAloD0MIAAAAAABwckCUhpRSlGgVTegDaBZHQMn3yf0mMOx1fZQoaAZoCWgPQwgAAAAAAOCHQJSGlFKUaBVN6ANoFkdAyf8JQTEiuHV9lChoBmgJaA9DCAAAAAAAcIJAlIaUUpRoFU3oA2gWR0DKBjjU3GXHdX2UKGgGaAloD0MIAAAAAAAIgUCUhpRSlGgVTegDaBZHQMoNFDOC5Et1fZQoaAZoCWgPQwgAAAAAAOiIQJSGlFKUaBVN6ANoFkdAyhQg2ycCo3V9lChoBmgJaA9DCAAAAAAAAHlAlIaUUpRoFU3oA2gWR0DKG027g88tdX2UKGgGaAloD0MIAAAAAAB4jECUhpRSlGgVTegDaBZHQMoiT/io86p1fZQoaAZoCWgPQwgAAAAAAECPQJSGlFKUaBVN6ANoFkdAyilDic5Ke3V9lChoBmgJaA9DCAAAAAAA6IBAlIaUUpRoFU3oA2gWR0DKL+dgH/tIdX2UKGgGaAloD0MIAAAAAAB4ikCUhpRSlGgVTegDaBZHQMo2XKxs2vV1fZQoaAZoCWgPQwgAAAAAAMiLQJSGlFKUaBVN6ANoFkdAyjyvx82Ji3V9lChoBmgJaA9DCAAAAAAAoIhAlIaUUpRoFU3oA2gWR0DKQ0iPp6hQdX2UKGgGaAloD0MIAAAAAAA4iUCUhpRSlGgVTegDaBZHQMpJvayKNyZ1fZQoaAZoCWgPQwgAAAAAAPB/QJSGlFKUaBVN6ANoFkdAylBQF10T13V9lChoBmgJaA9DCAAAAAAAGI1AlIaUUpRoFU3oA2gWR0DKV4TVx0dSdX2UKGgGaAloD0MIAAAAAABAjUCUhpRSlGgVTegDaBZHQMpewjjJdSl1fZQoaAZoCWgPQwgAAAAAAOCMQJSGlFKUaBVN6ANoFkdAymWTC9AX23V9lChoBmgJaA9DCAAAAAAAYGtAlIaUUpRoFU3oA2gWR0DKbMOlO45MdX2UKGgGaAloD0MIAAAAAAAgekCUhpRSlGgVTegDaBZHQMpz8cuSOip1fZQoaAZoCWgPQwgAAAAAAGCGQJSGlFKUaBVN6ANoFkdAynrMrS3LFHV9lChoBmgJaA9DCAAAAAAA2IlAlIaUUpRoFU3oA2gWR0DKgYYTCcgAdWUu"
99
+ },
100
+ "ep_success_buffer": {
101
+ ":type:": "<class 'collections.deque'>",
102
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
103
+ },
104
+ "_n_updates": 1000000,
105
+ "buffer_size": 1,
106
+ "batch_size": 64,
107
+ "learning_starts": 100,
108
+ "tau": 0.005,
109
+ "gamma": 0.99,
110
+ "gradient_steps": -1,
111
+ "optimize_memory_usage": false,
112
+ "replay_buffer_class": {
113
+ ":type:": "<class 'abc.ABCMeta'>",
114
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
115
+ "__module__": "stable_baselines3.common.buffers",
116
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
117
+ "__init__": "<function ReplayBuffer.__init__ at 0x132b96dd0>",
118
+ "add": "<function ReplayBuffer.add at 0x132b96e60>",
119
+ "sample": "<function ReplayBuffer.sample at 0x132b96ef0>",
120
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x132b96f80>",
121
+ "__abstractmethods__": "frozenset()",
122
+ "_abc_impl": "<_abc._abc_data object at 0x132746140>"
123
+ },
124
+ "replay_buffer_kwargs": {},
125
+ "train_freq": {
126
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
127
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
128
+ },
129
+ "use_sde_at_warmup": false,
130
+ "policy_delay": 1,
131
+ "target_noise_clip": 0.0,
132
+ "target_policy_noise": 0.1,
133
+ "actor_batch_norm_stats": [],
134
+ "critic_batch_norm_stats": [],
135
+ "actor_batch_norm_stats_target": [],
136
+ "critic_batch_norm_stats_target": []
137
+ }
ddpg-CartpoleSparseDMC-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7d63407ebf7a74d09be50b70ecd61f5298a245e6f3fa23fdbc62bc1ce325f99
3
+ size 1492509
ddpg-CartpoleSparseDMC-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-CartpoleSparseDMC-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8129359534ecce558e3dcff37c6e992bef170d531d76aaf7baf13ca03a07ac8
3
+ size 115468
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1000.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T08:51:40.858282"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed404189d92620aec8c17c7d6aa86dabd7218c4b46eabadcdad8f050056ad6b
3
+ size 38321