Quentin Gallouédec commited on
Commit
820485a
1 Parent(s): e6b6967

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLanderContinuous-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLanderContinuous-v2
16
+ type: LunarLanderContinuous-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 240.06 +/- 89.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **LunarLanderContinuous-v2**
25
+ This is a trained model of a **DDPG** agent playing **LunarLanderContinuous-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env LunarLanderContinuous-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env LunarLanderContinuous-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env LunarLanderContinuous-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env LunarLanderContinuous-v2 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('buffer_size', 200000),
66
+ ('gamma', 0.98),
67
+ ('gradient_steps', -1),
68
+ ('learning_rate', 0.001),
69
+ ('learning_starts', 10000),
70
+ ('n_timesteps', 300000.0),
71
+ ('noise_std', 0.1),
72
+ ('noise_type', 'normal'),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
75
+ ('train_freq', [1, 'episode']),
76
+ ('normalize', False)])
77
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - LunarLanderContinuous-v2
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2756518495
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/LunarLanderContinuous-v2__ddpg__2756518495__1671825121
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - gamma
5
+ - 0.98
6
+ - - gradient_steps
7
+ - -1
8
+ - - learning_rate
9
+ - 0.001
10
+ - - learning_starts
11
+ - 10000
12
+ - - n_timesteps
13
+ - 300000.0
14
+ - - noise_std
15
+ - 0.1
16
+ - - noise_type
17
+ - normal
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - train_freq
23
+ - - 1
24
+ - episode
ddpg-LunarLanderContinuous-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a32e005edb593687ef24cebd30dc851c7873debfdd35ef861307b840f529fc7f
3
+ size 4031261
ddpg-LunarLanderContinuous-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
ddpg-LunarLanderContinuous-v2/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6be0e35aa47a1b07125f686ebdb5a2cae6c6e9bdce8620350ee6f542531e6cf
3
+ size 1000879
ddpg-LunarLanderContinuous-v2/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58af5a1a76c97ba96857389ef9c876f60f701d1ae77a5551cf371ed4134e5a6d
3
+ size 1004847
ddpg-LunarLanderContinuous-v2/data ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7f47cedee940>",
8
+ "_build": "<function TD3Policy._build at 0x7f47cedee9d0>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f47cedeea60>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7f47cedeeaf0>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7f47cedeeb80>",
12
+ "forward": "<function TD3Policy.forward at 0x7f47cedeec10>",
13
+ "_predict": "<function TD3Policy._predict at 0x7f47cedeeca0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7f47cedeed30>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7f47cf217340>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ],
24
+ "n_critics": 1
25
+ },
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
29
+ "dtype": "float32",
30
+ "_shape": [
31
+ 8
32
+ ],
33
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
34
+ "high": "[inf inf inf inf inf inf inf inf]",
35
+ "bounded_below": "[False False False False False False False False]",
36
+ "bounded_above": "[False False False False False False False False]",
37
+ "_np_random": null
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
42
+ "dtype": "float32",
43
+ "_shape": [
44
+ 2
45
+ ],
46
+ "low": "[-1. -1.]",
47
+ "high": "[1. 1.]",
48
+ "bounded_below": "[ True True]",
49
+ "bounded_above": "[ True True]",
50
+ "_np_random": "RandomState(MT19937)"
51
+ },
52
+ "n_envs": 1,
53
+ "num_timesteps": 300116,
54
+ "_total_timesteps": 300000,
55
+ "_num_timesteps_at_start": 0,
56
+ "seed": 0,
57
+ "action_noise": {
58
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
59
+ ":serialized:": "gAWV+gAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwGX3NpZ21hlGgIKJYQAAAAAAAAAJqZmZmZmbk/mpmZmZmZuT+UaA9LAoWUaBN0lFKUdWIu",
60
+ "_mu": "[0. 0.]",
61
+ "_sigma": "[0.1 0.1]"
62
+ },
63
+ "start_time": 1671825126004867875,
64
+ "learning_rate": {
65
+ ":type:": "<class 'function'>",
66
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
67
+ },
68
+ "tensorboard_log": "runs/LunarLanderContinuous-v2__ddpg__2756518495__1671825121/LunarLanderContinuous-v2",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
72
+ },
73
+ "_last_obs": null,
74
+ "_last_episode_starts": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
77
+ },
78
+ "_last_original_obs": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALY31z6EtMI9WnY/vinmMbwIOZk86vjuPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
81
+ },
82
+ "_episode_num": 758,
83
+ "use_sde": false,
84
+ "sde_sample_freq": -1,
85
+ "_current_progress_remaining": -0.0003866666666667573,
86
+ "ep_info_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvQFmvoM/LkCUhpRSlIwBbJRLi4wBdJRHQJP289Mbm2d1fZQoaAZoCWgPQwg4LXjR16xwQJSGlFKUaBVL3mgWR0CT+Xdfsu3+dX2UKGgGaAloD0MIflTDfs/kcUCUhpRSlGgVS9doFkdAk/0d5prULHV9lChoBmgJaA9DCLVtGAVB23FAlIaUUpRoFU3OA2gWR0CUA2ic5Ke1dX2UKGgGaAloD0MIV81zRP6PcUCUhpRSlGgVS6FoFkdAlBGpL/S6UnV9lChoBmgJaA9DCL3l6scmJm5AlIaUUpRoFUvjaBZHQJQUisLfDUF1fZQoaAZoCWgPQwhN3CqIga7eP5SGlFKUaBVLkWgWR0CUGBShJyyVdX2UKGgGaAloD0MIQPz89+Ckb0CUhpRSlGgVS7JoFkdAlBqMzEaVEHV9lChoBmgJaA9DCOxoHOp3GGRAlIaUUpRoFU3oA2gWR0CUI6PMSsbOdX2UKGgGaAloD0MILXqnAm7qbkCUhpRSlGgVTS0BaBZHQJQyt/DtPYZ1fZQoaAZoCWgPQwgW9x+ZjmhyQJSGlFKUaBVLwGgWR0CUN3QAMlTndX2UKGgGaAloD0MIev1JfC4kcECUhpRSlGgVS7NoFkdAlDqUMw1zhnV9lChoBmgJaA9DCMhdhCnK5HBAlIaUUpRoFUv0aBZHQJQ9sHdGiHt1fZQoaAZoCWgPQwj/HydMmC9wQJSGlFKUaBVLwWgWR0CUQZ8yvcJudX2UKGgGaAloD0MIqvI9IxFaCkCUhpRSlGgVS5NoFkdAlESxL0z0pXV9lChoBmgJaA9DCB/zAYGOHnBAlIaUUpRoFUu9aBZHQJRHNapxWDJ1fZQoaAZoCWgPQwjRH5p5ciZwQJSGlFKUaBVLp2gWR0CUSj0oBq9HdX2UKGgGaAloD0MIWK1M+KUrbUCUhpRSlGgVS9JoFkdAlE0gOJ+DvnV9lChoBmgJaA9DCHoZxXKLWXBAlIaUUpRoFU2UAmgWR0CUUqo86mwadX2UKGgGaAloD0MIw9UBEPc5bUCUhpRSlGgVS6RoFkdAlFxtdE9dNXV9lChoBmgJaA9DCCQlPQyt53FAlIaUUpRoFUuoaBZHQJRfIKneizt1fZQoaAZoCWgPQwiWW1oNiZVtQJSGlFKUaBVNOgJoFkdAlGOT/dZaFHV9lChoBmgJaA9DCFbzHJFvIG1AlIaUUpRoFUuxaBZHQJRsGZkTYd11fZQoaAZoCWgPQwhmTwKbczxnwJSGlFKUaBVNaAFoFkdAlG+ttuUD+3V9lChoBmgJaA9DCDnx1Y4iGHFAlIaUUpRoFUuwaBZHQJR1PD0lJH11fZQoaAZoCWgPQwhZTdcTnUxxQJSGlFKUaBVL6GgWR0CUeEmapgkUdX2UKGgGaAloD0MIeEKvP4kHMkCUhpRSlGgVS41oFkdAlHvzgEU0vXV9lChoBmgJaA9DCL0ZNV8lf25AlIaUUpRoFUvxaBZHQJR+fNA1Nxl1fZQoaAZoCWgPQwjx12SN+rVxQJSGlFKUaBVLt2gWR0CUglBXCCSSdX2UKGgGaAloD0MImShC6jaQcECUhpRSlGgVS7VoFkdAlIVFUZNwi3V9lChoBmgJaA9DCF5pGan3KXJAlIaUUpRoFUvtaBZHQJSIeZy+6Ah1fZQoaAZoCWgPQwiBfAkV3DxwQJSGlFKUaBVLsmgWR0CUjEIXj2i+dX2UKGgGaAloD0MIjNgngCJ1ckCUhpRSlGgVS91oFkdAlI9IUN8VpXV9lChoBmgJaA9DCNZTq6+ueG9AlIaUUpRoFUu1aBZHQJSS1TwUg0V1fZQoaAZoCWgPQwiYUMHhhSxvQJSGlFKUaBVL2WgWR0CUleY/mknDdX2UKGgGaAloD0MIEeFfBI1ZNECUhpRSlGgVS6loFkdAlJlgJ1JUYXV9lChoBmgJaA9DCMSVs3fGF3nAlIaUUpRoFUtDaBZHQJSb6QNkOI91fZQoaAZoCWgPQwgtk+F4PsJuQJSGlFKUaBVN9AFoFkdAlJ67+kxh2HV9lChoBmgJaA9DCI7pCUu8XXBAlIaUUpRoFU2oAWgWR0CUpws2vStvdX2UKGgGaAloD0MI3nNgOcIycECUhpRSlGgVS+loFkdAlK2fx2B8QnV9lChoBmgJaA9DCAd96e3PJm9AlIaUUpRoFUumaBZHQJSxTZqVQhx1fZQoaAZoCWgPQwj9EYYByxdtQJSGlFKUaBVL0GgWR0CUtCqk/KQrdX2UKGgGaAloD0MIXMmOjUBgbECUhpRSlGgVTbACaBZHQJS5WU9pyp91fZQoaAZoCWgPQwgpPdNLTJ1wQJSGlFKUaBVLxWgWR0CUw6sjFAE/dX2UKGgGaAloD0MIXrpJDAIkb0CUhpRSlGgVS9loFkdAlMb0rXlKb3V9lChoBmgJaA9DCI1D/S7sl3FAlIaUUpRoFUudaBZHQJTKZGc4HX51fZQoaAZoCWgPQwjZmULnNa9uQJSGlFKUaBVN3QJoFkdAlM7tGqgh83V9lChoBmgJaA9DCHqobcMoEHFAlIaUUpRoFU0mAmgWR0CU20wAlv61dX2UKGgGaAloD0MIpgpGJbWfcECUhpRSlGgVS7poFkdAlOOVMmF8HHV9lChoBmgJaA9DCPC+KhfqAXFAlIaUUpRoFUuraBZHQJTmm2UjcEh1fZQoaAZoCWgPQwinJOtw9KhwQJSGlFKUaBVNLAFoFkdAlOnVpTMq0HV9lChoBmgJaA9DCFq4rMJmSW5AlIaUUpRoFUvFaBZHQJTujC66J691fZQoaAZoCWgPQwhJZvUOtydzQJSGlFKUaBVLsmgWR0CU8cPoV2zOdX2UKGgGaAloD0MIfjoeM5CNcUCUhpRSlGgVS8xoFkdAlPS+C5EtunV9lChoBmgJaA9DCKbW+412YFXAlIaUUpRoFU3oA2gWR0CU/Hlhw2l3dX2UKGgGaAloD0MI9dVVgdrqb0CUhpRSlGgVS6toFkdAlQsbsrupj3V9lChoBmgJaA9DCIWVCiqqKV/AlIaUUpRoFU0vAmgWR0CVD9tmcvugdX2UKGgGaAloD0MI5SfVPp0RckCUhpRSlGgVS7xoFkdAlRhMD0UXYXV9lChoBmgJaA9DCHB87Zkl625AlIaUUpRoFU0qAWgWR0CVG9axoqTbdX2UKGgGaAloD0MIf2399J+abUCUhpRSlGgVTZYCaBZHQJUiLB0p3HJ1fZQoaAZoCWgPQwgDQYAMHS5uQJSGlFKUaBVLr2gWR0CVLAxI8QqadX2UKGgGaAloD0MIICV2bW/nF0CUhpRSlGgVS7BoFkdAlS7tZV4oqnV9lChoBmgJaA9DCIP4wI7/d3FAlIaUUpRoFUuVaBZHQJUxxC8e0Xx1fZQoaAZoCWgPQwhyjGSPUDBwQJSGlFKUaBVLqWgWR0CVNEGtp22YdX2UKGgGaAloD0MI4uZUMoDJcUCUhpRSlGgVS65oFkdAlTcIE4ecQXV9lChoBmgJaA9DCPPLYIzIonFAlIaUUpRoFUu9aBZHQJU56Zw4sEt1fZQoaAZoCWgPQwjtLHqnAitjQJSGlFKUaBVN6ANoFkdAlUFOHN5dGHV9lChoBmgJaA9DCKndrwJ8BxpAlIaUUpRoFU3oA2gWR0CVVQAWSEDhdX2UKGgGaAloD0MIXmdD/hk7cUCUhpRSlGgVS9ZoFkdAlWPb1yvLYHV9lChoBmgJaA9DCI+K/zvi8nBAlIaUUpRoFUugaBZHQJVnPZ+QU6B1fZQoaAZoCWgPQwg6r7FL1L5xQJSGlFKUaBVLxmgWR0CVafWBSUC8dX2UKGgGaAloD0MIB3k9mNRTcUCUhpRSlGgVS5FoFkdAlW0dxuKoAHV9lChoBmgJaA9DCLPQzmnWNHFAlIaUUpRoFUvBaBZHQJVvpWLgn+h1fZQoaAZoCWgPQwjsTKHz2kRxQJSGlFKUaBVLmWgWR0CVcszTnaFmdX2UKGgGaAloD0MIK/aX3ZPkcECUhpRSlGgVTfYBaBZHQJV2y4+bExZ1fZQoaAZoCWgPQwhDPBIvz71hQJSGlFKUaBVN6ANoFkdAlYHt0q6OHXV9lChoBmgJaA9DCGhZ949FpXFAlIaUUpRoFUvcaBZHQJWRBNcnmaJ1fZQoaAZoCWgPQwjQDriu2AdxQJSGlFKUaBVL2mgWR0CVlKZTAFgVdX2UKGgGaAloD0MIUbtfBbifcECUhpRSlGgVS5xoFkdAlZgXDej2z3V9lChoBmgJaA9DCOFBs+veuj5AlIaUUpRoFUu8aBZHQJWaufAbhm51fZQoaAZoCWgPQwjT+IVXUk9yQJSGlFKUaBVNKwFoFkdAlZ4p9/jKgnV9lChoBmgJaA9DCMBatWtCcjjAlIaUUpRoFUtYaBZHQJWipODaoMt1fZQoaAZoCWgPQwg57//jRN9wQJSGlFKUaBVL0mgWR0CVpGffXPJJdX2UKGgGaAloD0MIH9sy4OxccECUhpRSlGgVS7loFkdAlafOcx0uDnV9lChoBmgJaA9DCEFmZ9E73WxAlIaUUpRoFU2eAWgWR0CVq6qYqoZRdX2UKGgGaAloD0MIutdJfZkEcECUhpRSlGgVS7JoFkdAlbH4Zl4C63V9lChoBmgJaA9DCP7UeOkm5m9AlIaUUpRoFUvuaBZHQJW1Gvmozep1fZQoaAZoCWgPQwhwlLw6xyAGQJSGlFKUaBVLp2gWR0CVuOFTvRZ2dX2UKGgGaAloD0MI7zmwHCGbPECUhpRSlGgVS2toFkdAlbt88YAKfHV9lChoBmgJaA9DCOIFEanpG3BAlIaUUpRoFUvQaBZHQJW9fUMG5c11fZQoaAZoCWgPQwiTqYJRSXlwQJSGlFKUaBVLrWgWR0CVwM48lolEdX2UKGgGaAloD0MISn8vhcdLcUCUhpRSlGgVS5poFkdAlcOUKE3843V9lChoBmgJaA9DCECEuHK2rXFAlIaUUpRoFUutaBZHQJXGLLPldTp1fZQoaAZoCWgPQwgBiLt6FbdxQJSGlFKUaBVLwGgWR0CVyQg2ZRbbdX2UKGgGaAloD0MI6MByhAygbkCUhpRSlGgVS6loFkdAlcwfYJ3PiXV9lChoBmgJaA9DCLZKsDic+U1AlIaUUpRoFUukaBZHQJXO6rjo6jp1fZQoaAZoCWgPQwgVrHE2HQJwQJSGlFKUaBVLsGgWR0CV0Z5Dqnm8dX2UKGgGaAloD0MIEVSNXo04cUCUhpRSlGgVS6NoFkdAldR3qu8sc3V9lChoBmgJaA9DCKweMA/Zj3BAlIaUUpRoFUvNaBZHQJXXQfq5byJ1fZQoaAZoCWgPQwiXHk31ZApMQJSGlFKUaBVLnmgWR0CV3hX7Lt/ndWUu"
89
+ },
90
+ "ep_success_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
93
+ },
94
+ "_n_updates": 290171,
95
+ "buffer_size": 1,
96
+ "batch_size": 100,
97
+ "learning_starts": 10000,
98
+ "tau": 0.005,
99
+ "gamma": 0.98,
100
+ "gradient_steps": -1,
101
+ "optimize_memory_usage": false,
102
+ "replay_buffer_class": {
103
+ ":type:": "<class 'abc.ABCMeta'>",
104
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
105
+ "__module__": "stable_baselines3.common.buffers",
106
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
107
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f47cedea430>",
108
+ "add": "<function ReplayBuffer.add at 0x7f47cedea4c0>",
109
+ "sample": "<function ReplayBuffer.sample at 0x7f47cedea550>",
110
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f47cedea5e0>",
111
+ "__abstractmethods__": "frozenset()",
112
+ "_abc_impl": "<_abc._abc_data object at 0x7f47cede1c40>"
113
+ },
114
+ "replay_buffer_kwargs": {},
115
+ "train_freq": {
116
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
117
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
118
+ },
119
+ "use_sde_at_warmup": false,
120
+ "policy_delay": 1,
121
+ "target_noise_clip": 0.0,
122
+ "target_policy_noise": 0.1,
123
+ "_action_repeat": [
124
+ null
125
+ ],
126
+ "surgeon": null,
127
+ "actor_batch_norm_stats": [],
128
+ "critic_batch_norm_stats": [],
129
+ "actor_batch_norm_stats_target": [],
130
+ "critic_batch_norm_stats_target": [],
131
+ "_last_action": {
132
+ ":type:": "<class 'numpy.ndarray'>",
133
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAFb/f7/8+lE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
134
+ }
135
+ }
ddpg-LunarLanderContinuous-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98e85fd7b79e70b3ed53444e7c8b1fbec88aeca2767d757c1d781166b2d7b1e4
3
+ size 2003997
ddpg-LunarLanderContinuous-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-LunarLanderContinuous-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03a07d5b0b49710e2c49fe7724053eef96a96d5f128b130c9f2d19b30845fbb3
3
+ size 183153
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 240.0581494, "std_reward": 89.35052380786438, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T17:24:48.913704"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8811ad81fafce82719f87affca4cfe42acf876b6d611277a9a4f13e646a035f
3
+ size 22532