Quentin Gallouédec
commited on
Commit
•
20b9c5c
1
Parent(s):
d20ef22
Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +81 -0
- config.yml +27 -0
- dqn-Acrobot-v1.zip +3 -0
- dqn-Acrobot-v1/_stable_baselines3_version +1 -0
- dqn-Acrobot-v1/data +130 -0
- dqn-Acrobot-v1/policy.optimizer.pth +3 -0
- dqn-Acrobot-v1/policy.pth +3 -0
- dqn-Acrobot-v1/pytorch_variables.pth +3 -0
- dqn-Acrobot-v1/system_info.txt +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Acrobot-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Acrobot-v1
|
16 |
+
type: Acrobot-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -86.70 +/- 24.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **Acrobot-v1**
|
25 |
+
This is a trained model of a **DQN** agent playing **Acrobot-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env Acrobot-v1 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo dqn --env Acrobot-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo dqn --env Acrobot-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo dqn --env Acrobot-v1 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('buffer_size', 50000),
|
67 |
+
('exploration_final_eps', 0.1),
|
68 |
+
('exploration_fraction', 0.12),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('gradient_steps', -1),
|
71 |
+
('learning_rate', 0.00063),
|
72 |
+
('learning_starts', 0),
|
73 |
+
('n_timesteps', 100000.0),
|
74 |
+
('policy', 'MlpPolicy'),
|
75 |
+
('policy_kwargs', 'dict(net_arch=[256, 256])'),
|
76 |
+
('target_update_interval', 250),
|
77 |
+
('train_freq', 4),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- dqn
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Acrobot-v1
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1186815141
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Acrobot-v1__dqn__1186815141__1671833757
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - yaml_file
|
81 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - buffer_size
|
5 |
+
- 50000
|
6 |
+
- - exploration_final_eps
|
7 |
+
- 0.1
|
8 |
+
- - exploration_fraction
|
9 |
+
- 0.12
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - gradient_steps
|
13 |
+
- -1
|
14 |
+
- - learning_rate
|
15 |
+
- 0.00063
|
16 |
+
- - learning_starts
|
17 |
+
- 0
|
18 |
+
- - n_timesteps
|
19 |
+
- 100000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - policy_kwargs
|
23 |
+
- dict(net_arch=[256, 256])
|
24 |
+
- - target_update_interval
|
25 |
+
- 250
|
26 |
+
- - train_freq
|
27 |
+
- 4
|
dqn-Acrobot-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b03f1563977bdf5cf467e0f1933cc6a4f1511523b41d0761b650826c7505c309
|
3 |
+
size 1122741
|
dqn-Acrobot-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
dqn-Acrobot-v1/data
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f3803ecb4c0>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f3803ecb550>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f3803ecb5e0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f3803ecb670>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f3803ecb700>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f3803ecb790>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f3803ecb820>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3803ece500>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {
|
19 |
+
"net_arch": [
|
20 |
+
256,
|
21 |
+
256
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/2w9JwdYx4sGUaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAP9sPSUHWMeJBlGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
6
|
30 |
+
],
|
31 |
+
"low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
|
32 |
+
"high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
|
33 |
+
"bounded_below": "[ True True True True True True]",
|
34 |
+
"bounded_above": "[ True True True True True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVUgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"n": 3,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 100000,
|
47 |
+
"_total_timesteps": 100000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": 0,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1671833759701185109,
|
52 |
+
"learning_rate": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"tensorboard_log": "runs/Acrobot-v1__dqn__1186815141__1671833757/Acrobot-v1",
|
57 |
+
"lr_schedule": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
60 |
+
},
|
61 |
+
"_last_obs": null,
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVjQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAADzGfj8oKsi93o1/P+ugcT05piK/MBi+P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsGhpSMAUOUdJRSlC4="
|
69 |
+
},
|
70 |
+
"_episode_num": 957,
|
71 |
+
"use_sde": false,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": 0.0,
|
74 |
+
"ep_info_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFlAAAAAAACMAWyUS2aMAXSUR0BnJIcvM8oydX2UKGgGR8BXQAAAAAAAaAdLXmgIR0BnKno5ggHNdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BnLx9ZzPrwdX2UKGgGR8BaQAAAAAAAaAdLamgIR0BnNeOQyRCAdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BnOoJmdy1edX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BnQKynk1dgdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BnRl9tuUD/dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BnS9eKKpDNdX2UKGgGR8BZQAAAAAAAaAdLZmgIR0BnUonWrfcfdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BnV8KohpxndX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BnXKuU2UB5dX2UKGgGR8BQwAAAAAAAaAdLRGgIR0BnYRomG/N8dX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BnZo0j1PFedX2UKGgGR8BOgAAAAAAAaAdLPmgIR0BnancSGrS3dX2UKGgGR8BSwAAAAAAAaAdLTGgIR0Bnb19roGILdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BndIvcrRShdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0Bnea9du5z6dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BnflJpWV/udX2UKGgGR8BVQAAAAAAAaAdLVmgIR0Bng8K7ZnL8dX2UKGgGR8BXQAAAAAAAaAdLXmgIR0BnifJ/5LyudX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bnj1bqyGBXdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BnlYR9PUKBdX2UKGgGR8BWgAAAAAAAaAdLW2gIR0Bnmz1CgK4QdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0BnoC1gH/tIdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0BnpueYlY2bdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0BnrQv+OwPidX2UKGgGR8BVAAAAAAAAaAdLVWgIR0Bnsns9jgAIdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BntymygPEsdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0BnvV2vB7/odX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bnwn29L6DXdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0Bnxyr5qM3qdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BnzJuqFRHgdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0Bn0Y3Lmp2mdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0Bn1jUXpGF0dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0Bn2lk4FRpDdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0Bn31j7Q9iddX2UKGgGR8BVAAAAAAAAaAdLVWgIR0Bn5PnlnyuqdX2UKGgGR8BXAAAAAAAAaAdLXWgIR0Bn6uznied1dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bn79ie/YapdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0Bn9QLXtjTbdX2UKGgGR8BcQAAAAAAAaAdLcmgIR0Bn/G5e7cwhdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0BoAqJoCdSVdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BoCJiLEUCadX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BoDgTdtVJddX2UKGgGR8BcwAAAAAAAaAdLdGgIR0BoFYJiRW92dX2UKGgGR8BXQAAAAAAAaAdLXmgIR0BoG3FUADJVdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BoIKQJXyRTdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0BoJx/RVp9JdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0BoLYv114gSdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BoNAQ4CIUKdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BoOSt5le4TdX2UKGgGR8BYwAAAAAAAaAdLZGgIR0BoP5/LDAJtdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BoRAQlKK51dX2UKGgGR8BYwAAAAAAAaAdLZGgIR0BoSniPyTY/dX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BoUCTGHYYjdX2UKGgGR8BZgAAAAAAAaAdLZ2gIR0BoVuZ5Rjz7dX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BoW00tRNypdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BoYLvPTodNdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BoZvjp9qk/dX2UKGgGR8BSgAAAAAAAaAdLS2gIR0Boa+n0kGA1dX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BocVIRRMvidX2UKGgGR8BVwAAAAAAAaAdLWGgIR0Bodv4/NZ/1dX2UKGgGR8BSQAAAAAAAaAdLSmgIR0Boe6curZJ1dX2UKGgGR8BSgAAAAAAAaAdLS2gIR0BogJSgoPTYdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BohbzshPj5dX2UKGgGR8BVwAAAAAAAaAdLWGgIR0Boi2j7ALy+dX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BokQyqMm4RdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BolkpLEk0KdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0Bom7Prv9cbdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0BooJbfP5YYdX2UKGgGR8BdQAAAAAAAaAdLdmgIR0BoqCD28IzFdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BorqK+BYmtdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BotAlt0mtydX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BouKgElme2dX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BovQ3o9s7/dX2UKGgGR8BSgAAAAAAAaAdLS2gIR0BowfhS9/SZdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Boxu/etSyddX2UKGgGR8BOgAAAAAAAaAdLPmgIR0Boyw8jiXIEdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0Bo0ALux8lYdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0Bo1S8+RoysdX2UKGgGR8BYwAAAAAAAaAdLZGgIR0Bo26bjLjgidX2UKGgGR8BawAAAAAAAaAdLbGgIR0Bo4pjDsMRZdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0Bo54zWPLgXdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0Bo7Eq6OHWSdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0Bo8auSwGGEdX2UKGgGR8BQQAAAAAAAaAdLQmgIR0Bo9dCHARChdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0Bo+n1ct5D7dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0Bo/6SeRPoFdX2UKGgGR8BYgAAAAAAAaAdLY2gIR0BpBheC04R3dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BpC0SRKYiQdX2UKGgGR8BbAAAAAAAAaAdLbWgIR0BpEjm+0w8GdX2UKGgGR8BXgAAAAAAAaAdLX2gIR0BpGHG8274BdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BpHV8CxNZedX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BpIj5j6N2ldX2UKGgGR8BWgAAAAAAAaAdLW2gIR0BpKCdQO4G2dX2UKGgGR8BbwAAAAAAAaAdLcGgIR0BpL3GEPDpDdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BpNBssQNCrdX2UKGgGR8BZgAAAAAAAaAdLZ2gIR0BpOppcophGdX2UKGgGR8BYQAAAAAAAaAdLYmgIR0BpQRAGB4D+dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BpRocDKYAsdWUu"
|
77 |
+
},
|
78 |
+
"ep_success_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
81 |
+
},
|
82 |
+
"_n_updates": 100000,
|
83 |
+
"buffer_size": 1,
|
84 |
+
"batch_size": 128,
|
85 |
+
"learning_starts": 0,
|
86 |
+
"tau": 1.0,
|
87 |
+
"gamma": 0.99,
|
88 |
+
"gradient_steps": -1,
|
89 |
+
"optimize_memory_usage": false,
|
90 |
+
"replay_buffer_class": {
|
91 |
+
":type:": "<class 'abc.ABCMeta'>",
|
92 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
93 |
+
"__module__": "stable_baselines3.common.buffers",
|
94 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
95 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f3803f2a430>",
|
96 |
+
"add": "<function ReplayBuffer.add at 0x7f3803f2a4c0>",
|
97 |
+
"sample": "<function ReplayBuffer.sample at 0x7f3803f2a550>",
|
98 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f3803f2a5e0>",
|
99 |
+
"__abstractmethods__": "frozenset()",
|
100 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f38043b3680>"
|
101 |
+
},
|
102 |
+
"replay_buffer_kwargs": {},
|
103 |
+
"train_freq": {
|
104 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
105 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
106 |
+
},
|
107 |
+
"actor": null,
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.1,
|
111 |
+
"exploration_fraction": 0.12,
|
112 |
+
"target_update_interval": 250,
|
113 |
+
"_n_calls": 100000,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.1,
|
116 |
+
"exploration_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWVYQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxFL2hvbWUvcWdhbGxvdWVkZWMvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxFL2hvbWUvcWdhbGxvdWVkZWMvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlGg3Rz++uFHrhR64hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
119 |
+
},
|
120 |
+
"_action_repeat": [
|
121 |
+
null
|
122 |
+
],
|
123 |
+
"surgeon": null,
|
124 |
+
"batch_norm_stats": [],
|
125 |
+
"batch_norm_stats_target": [],
|
126 |
+
"_last_action": {
|
127 |
+
":type:": "<class 'numpy.ndarray'>",
|
128 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
|
129 |
+
}
|
130 |
+
}
|
dqn-Acrobot-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfcfd33dc30443e14a1eeb8a7de27ab131d5f114f646581fe5726a16d026f4f0
|
3 |
+
size 551855
|
dqn-Acrobot-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86e6781d4362a39ae15996eb2894382b7d468a0b15d73a1b49dfb99b9353cbc9
|
3 |
+
size 550913
|
dqn-Acrobot-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dqn-Acrobot-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87a68d7ca6925a1b0ca098d8c80972f6dffade20d4eba895d805031b08514c86
|
3 |
+
size 951333
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -86.7, "std_reward": 24.25716389028198, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T16:06:06.810020"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f488637cdbf610adeaef07c2a6a86a68229d213d713df7c8d680d0e9d122a9b
|
3 |
+
size 21650
|