Quentin Gallouédec commited on
Commit
2511ea6
1 Parent(s): 1b455e2

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -184.35 +/- 106.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **SAC** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env Pendulum-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env Pendulum-v1 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('learning_rate', 0.001),
66
+ ('n_timesteps', 20000),
67
+ ('policy', 'MlpPolicy'),
68
+ ('normalize', False)])
69
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Pendulum-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 3135132532
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - learning_rate
3
+ - 0.001
4
+ - - n_timesteps
5
+ - 20000
6
+ - - policy
7
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f5d45adaf37b39a1751a7b205c7f9299bea41f821ea44c877877db12e6e6db0
3
+ size 143797
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -184.35301469999996, "std_reward": 106.89944811657462, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:36:56.513896"}
sac-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:219eae69f24402e123c2d00c6ced8d07f887c913fb98f1ff062bd827637a89b2
3
+ size 3012413
sac-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
sac-Pendulum-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c1f34c36b7a1a89a728424d9d6ab4dd4ec89b0b8ceca5ea5e432cf2cc190424
3
+ size 545181
sac-Pendulum-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a4474061898855d9b1e994c4fb91efc4c3f50beafa3ffd34c2929aedbfd1f2f
3
+ size 1086969
sac-Pendulum-v1/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7f6c739d1ca0>",
8
+ "_build": "<function SACPolicy._build at 0x7f6c739d1d30>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f6c739d1dc0>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f6c739d1e50>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7f6c739d1ee0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7f6c739d1f70>",
13
+ "forward": "<function SACPolicy.forward at 0x7f6c739da040>",
14
+ "_predict": "<function SACPolicy._predict at 0x7f6c739da0d0>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f6c739da160>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7f6c73ebedc0>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "use_sde": false
22
+ },
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 3
29
+ ],
30
+ "low": "[-1. -1. -8.]",
31
+ "high": "[1. 1. 8.]",
32
+ "bounded_below": "[ True True True]",
33
+ "bounded_above": "[ True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 1
42
+ ],
43
+ "low": "[-2.]",
44
+ "high": "[2.]",
45
+ "bounded_below": "[ True]",
46
+ "bounded_above": "[ True]",
47
+ "_np_random": "RandomState(MT19937)"
48
+ },
49
+ "n_envs": 1,
50
+ "num_timesteps": 20000,
51
+ "_total_timesteps": 20000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1671719869860530827,
56
+ "learning_rate": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
+ },
60
+ "tensorboard_log": null,
61
+ "lr_schedule": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
64
+ },
65
+ "_last_obs": null,
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
69
+ },
70
+ "_last_original_obs": {
71
+ ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAClpfj+L2OM91obOvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
73
+ },
74
+ "_episode_num": 100,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxlBOtPtTlMCUhpRSlIwBbJRLyIwBdJRHQAUDx9XtBv91fZQoaAZoCWgPQwhn8zgMVkabwJSGlFKUaBVLyGgWR0AS+zJIUahpdX2UKGgGaAloD0MImE9WDLeklcCUhpRSlGgVS8hoFkdAG4zo2XLNfXV9lChoBmgJaA9DCNgRh2zgBJzAlIaUUpRoFUvIaBZHQCH6GgzxgAp1fZQoaAZoCWgPQwgg7X+AdS+ZwJSGlFKUaBVLyGgWR0AmQI2OyVv/dX2UKGgGaAloD0MI6NoX0GvamcCUhpRSlGgVS8hoFkdAKm3g9/z8QHV9lChoBmgJaA9DCITU7ezr85bAlIaUUpRoFUvIaBZHQC6artE5Qxh1fZQoaAZoCWgPQwhfl+E/vfKPwJSGlFKUaBVLyGgWR0Axb/i5uqFRdX2UKGgGaAloD0MIS1tc40M9kcCUhpRSlGgVS8hoFkdAM4d6LOzIFXV9lChoBmgJaA9DCIyDS8eceIzAlIaUUpRoFUvIaBZHQDWbcQAdXDF1fZQoaAZoCWgPQwiZKELqlpSJwJSGlFKUaBVLyGgWR0A3yZQHiWE9dX2UKGgGaAloD0MI6fF7m15AgMCUhpRSlGgVS8hoFkdAOdu+mFaje3V9lChoBmgJaA9DCKiMf59xofm/lIaUUpRoFUvIaBZHQDvxWp6yB091fZQoaAZoCWgPQwgmOPWBtN2UwJSGlFKUaBVLyGgWR0A+Cp84PwuvdX2UKGgGaAloD0MI+mGE8KhlcMCUhpRSlGgVS8hoFkdAQBDMC9ytFXV9lChoBmgJaA9DCLTIdr4fgm/AlIaUUpRoFUvIaBZHQEEd+T/yXld1fZQoaAZoCWgPQwimR1M9mWt2wJSGlFKUaBVLyGgWR0BCLGhEjPfLdX2UKGgGaAloD0MI6nqi60JaYMCUhpRSlGgVS8hoFkdARYxiAlOXV3V9lChoBmgJaA9DCMLfL2ZLdmDAlIaUUpRoFUvIaBZHQElos9SuQp51fZQoaAZoCWgPQwhKmGn7Vz14wJSGlFKUaBVLyGgWR0BNPi/wiJO4dX2UKGgGaAloD0MIhzWVReFwbcCUhpRSlGgVS8hoFkdAUJDd9Dx9X3V9lChoBmgJaA9DCGGowwq34V7AlIaUUpRoFUvIaBZHQFD9IAwPAfx1fZQoaAZoCWgPQwhDN/sD5VYXwJSGlFKUaBVLyGgWR0BRZfS2H+IedX2UKGgGaAloD0MIBtUGJ6INcMCUhpRSlGgVS8hoFkdAUc/Kq4pc5nV9lChoBmgJaA9DCP/NixMfdpHAlIaUUpRoFUvIaBZHQFI5Mpw0fo11fZQoaAZoCWgPQwjwbfqzfySEwJSGlFKUaBVLyGgWR0BSoirYGt6pdX2UKGgGaAloD0MI6gjgZvHpXcCUhpRSlGgVS8hoFkdAUw4daMaS93V9lChoBmgJaA9DCPinVImyLW7AlIaUUpRoFUvIaBZHQFN4/L1VYIV1fZQoaAZoCWgPQwgO2xZlNnBfwJSGlFKUaBVLyGgWR0BT4uDWbwz+dX2UKGgGaAloD0MICqGDLmFZYMCUhpRSlGgVS8hoFkdAVEWHck+otXV9lChoBmgJaA9DCJROJJhqdl7AlIaUUpRoFUvIaBZHQFSvnAIppex1fZQoaAZoCWgPQwgi+rX103/vv5SGlFKUaBVLyGgWR0BVGcIeHSF5dX2UKGgGaAloD0MIRYE+kSfPXsCUhpRSlGgVS8hoFkdAVYDxtpEhJXV9lChoBmgJaA9DCGxaKQRyL2/AlIaUUpRoFUvIaBZHQFXsm3fAKv51fZQoaAZoCWgPQwihndMs0G70v5SGlFKUaBVLyGgWR0BWUnUQTVUddX2UKGgGaAloD0MIUFQ2rKnhXsCUhpRSlGgVS8hoFkdAVrgcU/OdG3V9lChoBmgJaA9DCKIpO/2g3F/AlIaUUpRoFUvIaBZHQFclL9uP3i91fZQoaAZoCWgPQwg7j4r/O59fwJSGlFKUaBVLyGgWR0BXjxSgoPTYdX2UKGgGaAloD0MItKz7x8IFYMCUhpRSlGgVS8hoFkdAV/WXa8Hv+nV9lChoBmgJaA9DCIR/ETRmUgHAlIaUUpRoFUvIaBZHQFhbWMS9M9N1fZQoaAZoCWgPQwjcL5+sGA4AwJSGlFKUaBVLyGgWR0BYxUU9IPK/dX2UKGgGaAloD0MIQtKnVfTsXcCUhpRSlGgVS8hoFkdAWTCuOjqOcXV9lChoBmgJaA9DCNAM4gM7GV/AlIaUUpRoFUvIaBZHQFmaczqKP4p1fZQoaAZoCWgPQwgVkWEVbydfwJSGlFKUaBVLyGgWR0BaB7BsQ/X5dX2UKGgGaAloD0MIAB5RoTrXbMCUhpRSlGgVS8hoFkdAWm19Tgl4T3V9lChoBmgJaA9DCJp7SPjeHV7AlIaUUpRoFUvIaBZHQFrMSlnAZbZ1fZQoaAZoCWgPQwg5J/bQPu5ewJSGlFKUaBVLyGgWR0BbMZUcXFcZdX2UKGgGaAloD0MIFi8Whsj4XcCUhpRSlGgVS8hoFkdAW6EkdFOO83V9lChoBmgJaA9DCGKE8Gjj4l7AlIaUUpRoFUvIaBZHQFwSIF/x2B91fZQoaAZoCWgPQwjpnJ/iOGFswJSGlFKUaBVLyGgWR0BcfAla8pTddX2UKGgGaAloD0MI4s0avK8ybMCUhpRSlGgVS8hoFkdAXOmUgSvkinV9lChoBmgJaA9DCNyBOuXR3F3AlIaUUpRoFUvIaBZHQF1QHMUypJh1fZQoaAZoCWgPQwjsMCb9PTNgwJSGlFKUaBVLyGgWR0BdujTa0x/NdX2UKGgGaAloD0MIeSCySJMbYMCUhpRSlGgVS8hoFkdAXiTuNPxhD3V9lChoBmgJaA9DCDttjQjG72zAlIaUUpRoFUvIaBZHQF6S8pkPMB91fZQoaAZoCWgPQwhLy0i9p+xrwJSGlFKUaBVLyGgWR0Be/78m8dxRdX2UKGgGaAloD0MI6dMq+kPZXsCUhpRSlGgVS8hoFkdAX2sY51eSjnV9lChoBmgJaA9DCFuZ8Ev96V/AlIaUUpRoFUvIaBZHQF/VENvwVj91fZQoaAZoCWgPQwi5isVvCnRtwJSGlFKUaBVLyGgWR0BgGi88La24dX2UKGgGaAloD0MIDmq/tRM6XcCUhpRSlGgVS8hoFkdAYFCbZvkzXXV9lChoBmgJaA9DCCxF8pXAcW7AlIaUUpRoFUvIaBZHQGCHswco6S11fZQoaAZoCWgPQwihhm9h3Tj1v5SGlFKUaBVLyGgWR0Bgu2J53TuwdX2UKGgGaAloD0MIqWkX00wPX8CUhpRSlGgVS8hoFkdAYPA5YHPeHnV9lChoBmgJaA9DCIl9AihGiV/AlIaUUpRoFUvIaBZHQGEm28AaNuN1fZQoaAZoCWgPQwitTPilfh5ewJSGlFKUaBVLyGgWR0BhWhJGvwEydX2UKGgGaAloD0MIh/wzg/iTX8CUhpRSlGgVS8hoFkdAYZA+5e7cwnV9lChoBmgJaA9DCBOB6h9EKV3AlIaUUpRoFUvIaBZHQGHGMuFpPAR1fZQoaAZoCWgPQwi3tvC8VDldwJSGlFKUaBVLyGgWR0Bh9pjlPrOadX2UKGgGaAloD0MI+OC1SxvJXcCUhpRSlGgVS8hoFkdAYiZU4JeE7HV9lChoBmgJaA9DCDqt26D2OwfAlIaUUpRoFUvIaBZHQGJWC3ocJdB1fZQoaAZoCWgPQwgibeNPVDb7v5SGlFKUaBVLyGgWR0BiheN96TnrdX2UKGgGaAloD0MIhGIraFodbMCUhpRSlGgVS8hoFkdAYrWr7wazeHV9lChoBmgJaA9DCPyKNVzkN2DAlIaUUpRoFUvIaBZHQGLlkKmbb111fZQoaAZoCWgPQwhpkIKnEAtgwJSGlFKUaBVLyGgWR0BjFVwm3OObdX2UKGgGaAloD0MIpP0PsFZtC8CUhpRSlGgVS8hoFkdAY0Vnxri2lXV9lChoBmgJaA9DCOF9VS5U8F7AlIaUUpRoFUvIaBZHQGN1cdYGMXJ1fZQoaAZoCWgPQwi+EkiJ3c5twJSGlFKUaBVLyGgWR0BjpXq/ub7TdX2UKGgGaAloD0MIaW6FsBpYXsCUhpRSlGgVS8hoFkdAY9Vtnf2saXV9lChoBmgJaA9DCJ5DGapiil7AlIaUUpRoFUvIaBZHQGQGDgAIY3x1fZQoaAZoCWgPQwjpDfeRWwduwJSGlFKUaBVLyGgWR0BkNsxwhnrZdX2UKGgGaAloD0MIdqT6zi87XcCUhpRSlGgVS8hoFkdAZGelTFVDKHV9lChoBmgJaA9DCAuZK4Nq1V7AlIaUUpRoFUvIaBZHQGSXytV7x/d1fZQoaAZoCWgPQwirkzMU95pswJSGlFKUaBVLyGgWR0Bkx+PcSGrTdX2UKGgGaAloD0MIIjmZuFULbcCUhpRSlGgVS8hoFkdAZPf6k690zXV9lChoBmgJaA9DCHfaGhGMowLAlIaUUpRoFUvIaBZHQGUn+AuqWC51fZQoaAZoCWgPQwhYAb7bvPELwJSGlFKUaBVLyGgWR0BlVgFC9h7WdX2UKGgGaAloD0MIu9QI/UwYbsCUhpRSlGgVS8hoFkdAZYWkzoEB83V9lChoBmgJaA9DCGiVmdL6717AlIaUUpRoFUvIaBZHQGW12SMcZLt1fZQoaAZoCWgPQwi2EOSghD5swJSGlFKUaBVLyGgWR0Bl5g6EJ0GNdX2UKGgGaAloD0MI+imOAy+CbsCUhpRSlGgVS8hoFkdAZhZYFJQLu3V9lChoBmgJaA9DCM+9h0uOyF3AlIaUUpRoFUvIaBZHQGZGRgZ0jkd1fZQoaAZoCWgPQwhkdavnpMpfwJSGlFKUaBVLyGgWR0BmeFC/oJRgdX2UKGgGaAloD0MIUPutnajZbsCUhpRSlGgVS8hoFkdAZqsNpdrwfHV9lChoBmgJaA9DCBfVIqKY0W3AlIaUUpRoFUvIaBZHQGbbQ71ZkkN1fZQoaAZoCWgPQwiKzce1IXlswJSGlFKUaBVLyGgWR0BnDQ+wC8vmdX2UKGgGaAloD0MIUtFY+ztiX8CUhpRSlGgVS8hoFkdAZz1lbNbC8HV9lChoBmgJaA9DCBf1Se6wNl/AlIaUUpRoFUvIaBZHQGdzIvrWy1N1fZQoaAZoCWgPQwggYK3aNYNdwJSGlFKUaBVLyGgWR0BnqPvc8DB/dX2UKGgGaAloD0MIIjXtYppEX8CUhpRSlGgVS8hoFkdAZ9xiaRZED3V9lChoBmgJaA9DCA1wQbYsZF3AlIaUUpRoFUvIaBZHQGgPU2DQJHB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 19900,
87
+ "buffer_size": 1,
88
+ "batch_size": 256,
89
+ "learning_starts": 100,
90
+ "tau": 0.005,
91
+ "gamma": 0.99,
92
+ "gradient_steps": 1,
93
+ "optimize_memory_usage": false,
94
+ "replay_buffer_class": {
95
+ ":type:": "<class 'abc.ABCMeta'>",
96
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
97
+ "__module__": "stable_baselines3.common.buffers",
98
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
99
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f6c73a2a430>",
100
+ "add": "<function ReplayBuffer.add at 0x7f6c73a2a4c0>",
101
+ "sample": "<function ReplayBuffer.sample at 0x7f6c73a2a550>",
102
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f6c73a2a5e0>",
103
+ "__abstractmethods__": "frozenset()",
104
+ "_abc_impl": "<_abc._abc_data object at 0x7f6c73a24340>"
105
+ },
106
+ "replay_buffer_kwargs": {},
107
+ "train_freq": {
108
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
109
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
110
+ },
111
+ "use_sde_at_warmup": false,
112
+ "target_entropy": -1.0,
113
+ "ent_coef": "auto",
114
+ "target_update_interval": 1,
115
+ "batch_norm_stats": [],
116
+ "batch_norm_stats_target": []
117
+ }
sac-Pendulum-v1/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db4fc07e27a0bf9a552bd24c2cb901d3341ba0ea28c1f17288c3467b2c63e721
3
+ size 1507
sac-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ea82ef1c6f1d6bbbb8d5adb31ebb4220e69d3282276f48f3b522ec430863e26
3
+ size 1357573
sac-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42cb208f9dd5b76d605718ce3d07fdd416c6739e351af12aa5357c23b43db6a0
3
+ size 747
sac-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5d5f14350ebdd6436351c3f9e87e4e0e54e0e8d9c53816fc90c8bb6646133c4
3
+ size 2918