Quentin Gallouédec
Initial commit
2c48868
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
"__module__": "sb3_contrib.tqc.policies",
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function TQCPolicy.__init__ at 0x7fe705eea670>",
"_build": "<function TQCPolicy._build at 0x7fe705eea700>",
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fe705eea790>",
"reset_noise": "<function TQCPolicy.reset_noise at 0x7fe705eea820>",
"make_actor": "<function TQCPolicy.make_actor at 0x7fe705eea8b0>",
"make_critic": "<function TQCPolicy.make_critic at 0x7fe705eea940>",
"forward": "<function TQCPolicy.forward at 0x7fe705eea9d0>",
"_predict": "<function TQCPolicy._predict at 0x7fe705eeaa60>",
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fe705eeaaf0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fe705ee8d40>"
},
"verbose": 1,
"policy_kwargs": {
"use_sde": false
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
11
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False]",
"bounded_above": "[False False False False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"dtype": "float32",
"_shape": [
3
],
"low": "[-1. -1. -1.]",
"high": "[1. 1. 1.]",
"bounded_below": "[ True True True]",
"bounded_above": "[ True True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1000000,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1675976923779374014,
"learning_rate": 0.0003,
"tensorboard_log": "runs/Hopper-v3__tqc__1346000078__1675976919/Hopper-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAHwBOsRmlvQ/tSdztsb+sj/qs/XpG3DVv4O+di+KP9y/nBQwFhrF6L+aDrScwUD7P2WlTZ+/HwZAWHnEoRzI5T+SPKxekBscQKFNo5E1BRrAAAAAAAAAJMCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu"
},
"_episode_num": 2401,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUfcBSAWArECUhpRSlIwBbJRN6AOMAXSUR0Dckqtuk1uSdX2UKGgGaAloD0MI/pjWpmEfkECUhpRSlGgVTToBaBZHQNyVJmqHXVd1fZQoaAZoCWgPQwggmQ6dVmKsQJSGlFKUaBVN6ANoFkdA3J0gXUYsNHV9lChoBmgJaA9DCHi4HRrWd49AlIaUUpRoFU05AWgWR0Dcn5ggvDgqdX2UKGgGaAloD0MIP26/fMKDrECUhpRSlGgVTegDaBZHQNynhYMKCxx1fZQoaAZoCWgPQwieYP91FnClQJSGlFKUaBVN9gJoFkdA3K2MeLNwBHV9lChoBmgJaA9DCMRafArAoJpAlIaUUpRoFU3qAWgWR0DcsXgx9G7SdX2UKGgGaAloD0MI0uP3Np3gqECUhpRSlGgVTWADaBZHQNy4WI77sOZ1fZQoaAZoCWgPQwggCJCho+yaQJSGlFKUaBVN/wFoFkdA3LxyDzAerHV9lChoBmgJaA9DCGaC4Vz77KhAlIaUUpRoFU1vA2gWR0Dcw3XtE5QxdX2UKGgGaAloD0MIDOcaZsjarECUhpRSlGgVTegDaBZHQNzLZXNPgvV1fZQoaAZoCWgPQwgzU1p/KyOWQJSGlFKUaBVNnAFoFkdA3M6tGDL8rXV9lChoBmgJaA9DCPkTlQ0L/Z9AlIaUUpRoFU1WAmgWR0Dc036U/wAmdX2UKGgGaAloD0MIeoocIi7Nj0CUhpRSlGgVTTkBaBZHQNzV9KnJkoZ1fZQoaAZoCWgPQwiSlsrb8ZSsQJSGlFKUaBVN6ANoFkdA3N07wDeTFHV9lChoBmgJaA9DCFlQGJQpN4VAlIaUUpRoFUveaBZHQNzessgIQe51fZQoaAZoCWgPQwiGrkSgqhCjQJSGlFKUaBVNvwJoFkdA3ONJ+fRNRHV9lChoBmgJaA9DCDOl9beMA6lAlIaUUpRoFU1wA2gWR0Dc6jfPZ7HAdX2UKGgGaAloD0MIzzKLUDzTrECUhpRSlGgVTegDaBZHQNzyKUnG8291fZQoaAZoCWgPQwiZZrrX+VibQJSGlFKUaBVN9AFoFkdA3PYgu+h4+3V9lChoBmgJaA9DCK8nui5Uu6NAlIaUUpRoFU25AmgWR0Dc+zdHCoCNdX2UKGgGaAloD0MIFmu4yO1zkECUhpRSlGgVTT8BaBZHQNz9ZQrxy4p1fZQoaAZoCWgPQwioUUgy27WiQJSGlFKUaBVNmgJoFkdA3QJE+mFajnV9lChoBmgJaA9DCJYlOssc76tAlIaUUpRoFU3RA2gWR0DdCZAPrfLtdX2UKGgGaAloD0MIKsjPRq5tkECUhpRSlGgVTTkBaBZHQN0L7Qr+YMR1fZQoaAZoCWgPQwiiXYWUt1WrQJSGlFKUaBVNzQNoFkdA3ROZXpnpS3V9lChoBmgJaA9DCGxfQC9MM5BAlIaUUpRoFU09AWgWR0DdFh/SfDk3dX2UKGgGaAloD0MI1NSytb7Pq0CUhpRSlGgVTc0DaBZHQN0d/1yeZoh1fZQoaAZoCWgPQwg0LhwIWe2VQJSGlFKUaBVNmgFoFkdA3SFKaNdZ73V9lChoBmgJaA9DCGd/oNyWF4ZAlIaUUpRoFUvlaBZHQN0jGMDfWMF1fZQoaAZoCWgPQwhK628JcGGsQJSGlFKUaBVN6ANoFkdA3TAzUaya/nV9lChoBmgJaA9DCCO6Z13jRpBAlIaUUpRoFU0+AWgWR0DdMrgis4kvdX2UKGgGaAloD0MI6ITQQWcQo0CUhpRSlGgVTawCaBZHQN04D6u8sc11fZQoaAZoCWgPQwi9GMqJ1hSVQJSGlFKUaBVNjwFoFkdA3TtFsZpBX3V9lChoBmgJaA9DCHk7wmnRSZBAlIaUUpRoFU0/AWgWR0DdPcvy5I6KdX2UKGgGaAloD0MICvg1ktRMkECUhpRSlGgVTT0BaBZHQN1AF5lSS/11fZQoaAZoCWgPQwgHeT2YtMOsQJSGlFKUaBVN6ANoFkdA3UfOasIVunV9lChoBmgJaA9DCPQ0YJB0TJBAlIaUUpRoFU08AWgWR0DdSk4U+LWJdX2UKGgGaAloD0MIO44fKv3YpUCUhpRSlGgVTf4CaBZHQN1QcecH4XZ1fZQoaAZoCWgPQwgH7GryxOaaQJSGlFKUaBVN6gFoFkdA3VRWdweeWnV9lChoBmgJaA9DCLjLft1Jc5ZAlIaUUpRoFU2eAWgWR0DdV5/6pHZsdX2UKGgGaAloD0MIOIYA4GgPrECUhpRSlGgVTcoDaBZHQN1fSjKs+3Z1fZQoaAZoCWgPQwi0HOihBuSrQJSGlFKUaBVN0gNoFkdA3WcaL9/BnHV9lChoBmgJaA9DCIUjSKWID6NAlIaUUpRoFU2kAmgWR0DdbIA9jgAIdX2UKGgGaAloD0MIG70aoOT3mECUhpRSlGgVTcABaBZHQN1wCdSEUTN1fZQoaAZoCWgPQwj8Gd6scSGQQJSGlFKUaBVNOgFoFkdA3XKFuQZGa3V9lChoBmgJaA9DCBQH0O9bj4RAlIaUUpRoFUvdaBZHQN10UGf9P1t1fZQoaAZoCWgPQwiNe/MbVreVQJSGlFKUaBVNlgFoFkdA3XeI9Zid8XV9lChoBmgJaA9DCNXqq6tKOqZAlIaUUpRoFU0XA2gWR0DdfdXJU5uJdX2UKGgGaAloD0MImUhpNn83qECUhpRSlGgVTVUDaBZHQN2EuN/z8P51fZQoaAZoCWgPQwg2PpP9Y0aXQJSGlFKUaBVNmQFoFkdA3YgKhVU+93V9lChoBmgJaA9DCOCe50+TM6NAlIaUUpRoFU22AmgWR0DdjZjUONHZdX2UKGgGaAloD0MIFR+fkB0thUCUhpRSlGgVS+BoFkdA3Y9qEM9bHXV9lChoBmgJaA9DCIrNx7VxoqBAlIaUUpRoFU1aAmgWR0DdlBsxtYSydX2UKGgGaAloD0MIskY9RAN8rECUhpRSlGgVTegDaBZHQN2btWC2+f11fZQoaAZoCWgPQwhSJjW0iXWsQJSGlFKUaBVN6ANoFkdA3aNk7tReknV9lChoBmgJaA9DCBE5fT3fC5BAlIaUUpRoFU09AWgWR0DdperNJOFhdX2UKGgGaAloD0MIDcaIRFmNrECUhpRSlGgVTegDaBZHQN2slUDZDiR1fZQoaAZoCWgPQwjtDikGAO2oQJSGlFKUaBVNcQNoFkdA3bLoUj9n9XV9lChoBmgJaA9DCHtpigBPo6hAlIaUUpRoFU1iA2gWR0DduavyqdYodX2UKGgGaAloD0MInxwFiMIDrUCUhpRSlGgVTegDaBZHQN3BDDnied11fZQoaAZoCWgPQwhYObTIxi2QQJSGlFKUaBVNPgFoFkdA3cOOVqesgnV9lChoBmgJaA9DCA9iZwqVoKxAlIaUUpRoFU3oA2gWR0Ddy4MspXp4dX2UKGgGaAloD0MIE9cxrgDrrECUhpRSlGgVTegDaBZHQN3TWKiwjdJ1fZQoaAZoCWgPQwhTIR6JX/mgQJSGlFKUaBVNWwJoFkdA3dgfDhLoOnV9lChoBmgJaA9DCOy+Y3hsrZVAlIaUUpRoFU2bAWgWR0Dd22L/dZaFdX2UKGgGaAloD0MIAn6NJGHzrECUhpRSlGgVTegDaBZHQN3jeV9KEnN1fZQoaAZoCWgPQwiLNPEOaPGlQJSGlFKUaBVNAgNoFkdA3el4rcj7h3V9lChoBmgJaA9DCDPfwU9k6axAlIaUUpRoFU3oA2gWR0Dd9pUi1RcedX2UKGgGaAloD0MIDD7NyZtMlkCUhpRSlGgVTZ0BaBZHQN35zo7ihnJ1fZQoaAZoCWgPQwiWeEDZ3OemQJSGlFKUaBVNHwNoFkdA3gA136hxpHV9lChoBmgJaA9DCL6ItmNKHK1AlIaUUpRoFU3oA2gWR0DeB7fcDbJwdX2UKGgGaAloD0MIrabriWbcrECUhpRSlGgVTegDaBZHQN4OVx4+r2h1fZQoaAZoCWgPQwil3ehjpnGmQJSGlFKUaBVNIgNoFkdA3hRlgKF7D3V9lChoBmgJaA9DCMITev3x06xAlIaUUpRoFU3oA2gWR0DeHGYx1xKhdX2UKGgGaAloD0MIrvGZ7BeXq0CUhpRSlGgVTcYDaBZHQN4j5d2LYPJ1fZQoaAZoCWgPQwgtzEI7z5KjQJSGlFKUaBVNtAJoFkdA3iklQbMot3V9lChoBmgJaA9DCJboLLMQrKxAlIaUUpRoFU3oA2gWR0DeMRcKWszVdX2UKGgGaAloD0MIHF2lu0ulrECUhpRSlGgVTegDaBZHQN44+v8IiTt1fZQoaAZoCWgPQwhS1QRRD/SsQJSGlFKUaBVN6ANoFkdA3kEHJjlPrXV9lChoBmgJaA9DCMPX17qEWpBAlIaUUpRoFU1CAWgWR0DeQ5feEZivdX2UKGgGaAloD0MIsWzmkMQekUCUhpRSlGgVTUYBaBZHQN5GLzrVvuR1fZQoaAZoCWgPQwgDJnDrbp2GQJSGlFKUaBVL6GgWR0DeSBC51/2CdX2UKGgGaAloD0MIe9tMhRg7rUCUhpRSlGgVTegDaBZHQN5QEwT/Q0J1fZQoaAZoCWgPQwjDvMeZLpOsQJSGlFKUaBVN6ANoFkdA3lf3qOLiuXV9lChoBmgJaA9DCJqUgm5fWZpAlIaUUpRoFU3nAWgWR0DeW9lSde6adX2UKGgGaAloD0MI8aDZdT8VrUCUhpRSlGgVTegDaBZHQN5jwXPiT+x1fZQoaAZoCWgPQwg8hVypN+isQJSGlFKUaBVN6ANoFkdA3mvALSuyNXV9lChoBmgJaA9DCB3Lu+oJ3axAlIaUUpRoFU3oA2gWR0Dec6r+jua4dX2UKGgGaAloD0MIDCB8KFl7rECUhpRSlGgVTegDaBZHQN56dXivPkd1fZQoaAZoCWgPQwhoWfePBRGmQJSGlFKUaBVNDANoFkdA3oAHPkq+anV9lChoBmgJaA9DCFhwP+AhFZdAlIaUUpRoFU2kAWgWR0DeguGX2M86dX2UKGgGaAloD0MIlE25wnt2lkCUhpRSlGgVTaABaBZHQN6FnBtxdY51fZQoaAZoCWgPQwjedqG5XtusQJSGlFKUaBVN6ANoFkdA3o1k3cpLEnV9lChoBmgJaA9DCJbqAl5eqqxAlIaUUpRoFU3oA2gWR0DelVcbyYoidX2UKGgGaAloD0MI3/qw3iiQrECUhpRSlGgVTegDaBZHQN6dOQnMMZx1fZQoaAZoCWgPQwhn0qbqbpisQJSGlFKUaBVN6ANoFkdA3qU9o1k1/HV9lChoBmgJaA9DCLH4TWE9iaZAlIaUUpRoFU0PA2gWR0Deq2GzQeFMdX2UKGgGaAloD0MI+ptQiICcj0CUhpRSlGgVTTgBaBZHQN6t4AU5+6R1fZQoaAZoCWgPQwjfbkkOqFqWQJSGlFKUaBVNkAFoFkdA3rEBlxffGnVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 990000,
"buffer_size": 1,
"batch_size": 256,
"learning_starts": 10000,
"tau": 0.005,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7fe7060ed5e0>",
"add": "<function ReplayBuffer.add at 0x7fe7060ed670>",
"sample": "<function ReplayBuffer.sample at 0x7fe7060ed700>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fe7060ed790>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fe7060ef1c0>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"target_entropy": -3.0,
"ent_coef": "auto",
"target_update_interval": 1,
"top_quantiles_to_drop_per_net": 5,
"batch_norm_stats": [],
"batch_norm_stats_target": []
}