Quentin Gallouédec
commited on
Commit
•
f07c4dd
1
Parent(s):
4bc77ba
Initial commit
Browse files- .gitattributes +1 -0
- README.md +70 -0
- args.yml +83 -0
- config.yml +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-Hopper-v3.zip +3 -0
- tqc-Hopper-v3/_stable_baselines3_version +1 -0
- tqc-Hopper-v3/actor.optimizer.pth +3 -0
- tqc-Hopper-v3/critic.optimizer.pth +3 -0
- tqc-Hopper-v3/data +115 -0
- tqc-Hopper-v3/ent_coef_optimizer.pth +3 -0
- tqc-Hopper-v3/policy.pth +3 -0
- tqc-Hopper-v3/pytorch_variables.pth +3 -0
- tqc-Hopper-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Hopper-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Hopper-v3
|
16 |
+
type: Hopper-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 3318.43 +/- 590.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **Hopper-v3**
|
25 |
+
This is a trained model of a **TQC** agent playing **Hopper-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env Hopper-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo tqc --env Hopper-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env Hopper-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo tqc --env Hopper-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo tqc --env Hopper-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo tqc --env Hopper-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('learning_starts', 10000),
|
66 |
+
('n_timesteps', 1000000.0),
|
67 |
+
('policy', 'MlpPolicy'),
|
68 |
+
('top_quantiles_to_drop_per_net', 5),
|
69 |
+
('normalize', False)])
|
70 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Hopper-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1489988575
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Hopper-v3__tqc__1489988575__1675911799
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - learning_starts
|
3 |
+
- 10000
|
4 |
+
- - n_timesteps
|
5 |
+
- 1000000.0
|
6 |
+
- - policy
|
7 |
+
- MlpPolicy
|
8 |
+
- - top_quantiles_to_drop_per_net
|
9 |
+
- 5
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd9170f8581f7f67ccb76a43201d0aaf67f9571e736957d4691e4677ed056ce9
|
3 |
+
size 1506620
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3318.432228, "std_reward": 590.1117810663247, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T15:50:17.126240"}
|
tqc-Hopper-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b702270f57059af3d761f6de6442e1196a7284b05f0e140094b4994f9c0cd72a
|
3 |
+
size 3328083
|
tqc-Hopper-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
tqc-Hopper-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5522f81cdac034526738cabb6514b19cba024def77ecf6d0f09ae338614d2386
|
3 |
+
size 569757
|
tqc-Hopper-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9b2cfb849d2557fc4840a49a1c606ebdc02480fe6c62f10f1a3f8d018a10b71
|
3 |
+
size 1226489
|
tqc-Hopper-v3/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7f42f8b26670>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7f42f8b26700>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f42f8b26790>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f42f8b26820>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7f42f8b268b0>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7f42f8b26940>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7f42f8b269d0>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7f42f8b26a60>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f42f8b26af0>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f42f8b28340>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"use_sde": false
|
22 |
+
},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float64",
|
27 |
+
"_shape": [
|
28 |
+
11
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
3
|
42 |
+
],
|
43 |
+
"low": "[-1. -1. -1.]",
|
44 |
+
"high": "[1. 1. 1.]",
|
45 |
+
"bounded_below": "[ True True True]",
|
46 |
+
"bounded_above": "[ True True True]",
|
47 |
+
"_np_random": "RandomState(MT19937)"
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 1000000,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1675911807908816431,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": "runs/Hopper-v3__tqc__1489988575__1675911799/Hopper-v3",
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAEf1gSB3cvM/+ZuLMyTpq7+GWy8+oa/Bvx6hoFtJ02I/egmZKjKNyT81ImSkNB3iP/j+bdL56MO/7FSssxgX8L/uqur3/778v65OS0Y+HnY/hpfwJD2gvj+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu"
|
70 |
+
},
|
71 |
+
"_episode_num": 2430,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.0,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgPChRAtzc0CUhpRSlIwBbJRLgIwBdJRHQN7/pYxgy/N1fZQoaAZoCWgPQwgChA8l2mF0QJSGlFKUaBVLgWgWR0DfAMI4KhL5dX2UKGgGaAloD0MI8GskCUI9dECUhpRSlGgVS4BoFkdA3wHb3PiT+3V9lChoBmgJaA9DCBB2ilVDGXJAlIaUUpRoFUt4aBZHQN8C1RgNPP91fZQoaAZoCWgPQwjH9IQlHvJxQJSGlFKUaBVLdmgWR0DfA9zlQuVYdX2UKGgGaAloD0MIxy5RvTWhcECUhpRSlGgVS3BoFkdA3wTWFpPAPHV9lChoBmgJaA9DCO84RUdyAXFAlIaUUpRoFUtzaBZHQN8FyHK4hEB1fZQoaAZoCWgPQwjV7IFW4K9xQJSGlFKUaBVLdGgWR0DfBsOWjXWfdX2UKGgGaAloD0MINe84RYcFckCUhpRSlGgVS3ZoFkdA3wfTsC1Z1XV9lChoBmgJaA9DCMIYkShUH4RAlIaUUpRoFUvIaBZHQN8JeXxFy7x1fZQoaAZoCWgPQwjHndLB+ktwQJSGlFKUaBVLcGgWR0DfCm8Y8+zMdX2UKGgGaAloD0MIZ7RVSSTtcUCUhpRSlGgVS3ZoFkdA3wtsww0wanV9lChoBmgJaA9DCE95dCNsGHVAlIaUUpRoFUuHaBZHQN8MkfoA4n51fZQoaAZoCWgPQwgPSMK+XTN5QJSGlFKUaBVLj2gWR0DfDdAD2alUdX2UKGgGaAloD0MIKSLDKp41eUCUhpRSlGgVS5JoFkdA3w8JbD/EO3V9lChoBmgJaA9DCKMfDacsxYFAlIaUUpRoFUvCaBZHQN8QuMriEQJ1fZQoaAZoCWgPQwjT2F4L2g2CQJSGlFKUaBVLumgWR0DfEj8yKvV3dX2UKGgGaAloD0MIYoVbPnJtgkCUhpRSlGgVS8JoFkdA3xP1+G47R3V9lChoBmgJaA9DCLGIYYdxE4JAlIaUUpRoFUu6aBZHQN8VeH0K7Zp1fZQoaAZoCWgPQwir7LsieLh6QJSGlFKUaBVLl2gWR0DfFskmJFb3dX2UKGgGaAloD0MIINCZtElKiECUhpRSlGgVS/JoFkdA3xjHCGvfTHV9lChoBmgJaA9DCCYeUDbFL5NAlIaUUpRoFU2OAWgWR0DfHBvb349HdX2UKGgGaAloD0MIN4yC4LHSgECUhpRSlGgVS8BoFkdA3x2rwsGxEHV9lChoBmgJaA9DCMzvNJkR6IhAlIaUUpRoFU0SAWgWR0DfH/QUSIxhdX2UKGgGaAloD0MIiL67lSXEgUCUhpRSlGgVS8xoFkdA3yGvneBQN3V9lChoBmgJaA9DCBd/2xPEYoFAlIaUUpRoFUvFaBZHQN8jW77Kq4p1fZQoaAZoCWgPQwhgAOFDyT2BQJSGlFKUaBVLxGgWR0DfJQ2fwqiHdX2UKGgGaAloD0MIaHbdW5F9aECUhpRSlGgVS1doFkdA3yXQAbADaHV9lChoBmgJaA9DCHfZrzvdjYJAlIaUUpRoFUvQaBZHQN8njC1JDmd1fZQoaAZoCWgPQwhaaOc0S+qBQJSGlFKUaBVLyGgWR0DfKU1donKGdX2UKGgGaAloD0MIIqXZPI5VaECUhpRSlGgVS1hoFkdA3yoJWvr4WXV9lChoBmgJaA9DCHgnnx6rdqlAlIaUUpRoFU17A2gWR0DfMZKOLiuMdX2UKGgGaAloD0MITODW3STCpUCUhpRSlGgVTQgDaBZHQN890zUd7v51fZQoaAZoCWgPQwgkCi3rXoKaQJSGlFKUaBVN8gFoFkdA30H1j7yhBnV9lChoBmgJaA9DCFTIlXrOMahAlIaUUpRoFU3oA2gWR0DfSR4JVsDXdX2UKGgGaAloD0MIZmZmZnaSqECUhpRSlGgVTegDaBZHQN9RLqjrRjV1fZQoaAZoCWgPQwiAKQMH5PGhQJSGlFKUaBVNuAJoFkdA31cK4rSVnnV9lChoBmgJaA9DCD6V057S0ZtAlIaUUpRoFU0RAmgWR0DfW4/Lns9kdX2UKGgGaAloD0MIurw5XIMGoUCUhpRSlGgVTXwCaBZHQN9hBRzBAOd1fZQoaAZoCWgPQwgPZD21eq6GQJSGlFKUaBVL8WgWR0DfYxBaFEiMdX2UKGgGaAloD0MILxaGyKlukUCUhpRSlGgVTVcBaBZHQN9l/iFbmlt1fZQoaAZoCWgPQwiFtpxLcZZiQJSGlFKUaBVLR2gWR0DfZpIrAgxKdX2UKGgGaAloD0MILpJ2ow/1YUCUhpRSlGgVS0VoFkdA32ckUhV2inV9lChoBmgJaA9DCGiz6nOVsI5AlIaUUpRoFU00AWgWR0DfacP1ct5EdX2UKGgGaAloD0MIHPD5YQSkYkCUhpRSlGgVS0doFkdA32pdOktVaXV9lChoBmgJaA9DCOm2RC64YGJAlIaUUpRoFUtGaBZHQN9q+jrJKap1fZQoaAZoCWgPQwjyejApPqthQJSGlFKUaBVLRGgWR0Dfa5GVObiIdX2UKGgGaAloD0MIuD6sN6qwcUCUhpRSlGgVS3BoFkdA32yBikfs/3V9lChoBmgJaA9DCIYb8PmhgHJAlIaUUpRoFUtzaBZHQN9tbljRUm51fZQoaAZoCWgPQwhiu3uArhhyQJSGlFKUaBVLdGgWR0DfbkrVbzK+dX2UKGgGaAloD0MIlpLlJFRVckCUhpRSlGgVS3VoFkdA328OHCXQdHV9lChoBmgJaA9DCFKazeNYKatAlIaUUpRoFU3oA2gWR0Dfdb/cJtzkdX2UKGgGaAloD0MIAYqRJZMbgkCUhpRSlGgVS8toFkdA33cqW7OE/XV9lChoBmgJaA9DCCxKCcGao6tAlIaUUpRoFU3oA2gWR0Dffrh78ejmdX2UKGgGaAloD0MIH/XXK0zCq0CUhpRSlGgVTegDaBZHQN+HI1sUIs11fZQoaAZoCWgPQwiBzTl4dqerQJSGlFKUaBVN6ANoFkdA348QKUFB6nV9lChoBmgJaA9DCEQzT66JvatAlIaUUpRoFU3oA2gWR0Dfl4mMglnidX2UKGgGaAloD0MIABx79vTUokCUhpRSlGgVTbYCaBZHQN+datp22Xt1fZQoaAZoCWgPQwjmBG1y+MluQJSGlFKUaBVLaWgWR0Dfnkyu3c59dX2UKGgGaAloD0MIY0UNpplHq0CUhpRSlGgVTegDaBZHQN+mzcd5prV1fZQoaAZoCWgPQwi3KLNBllOrQJSGlFKUaBVN6ANoFkdA369SN/e+EnV9lChoBmgJaA9DCMPTK2VZoHBAlIaUUpRoFUtvaBZHQN+wNkr9VFR1fZQoaAZoCWgPQwiFevoIrI+rQJSGlFKUaBVN6ANoFkdA37hocSoOx3V9lChoBmgJaA9DCGeY2lIvIKtAlIaUUpRoFU3oA2gWR0DfwH92s7uEdX2UKGgGaAloD0MIh6dXyop5q0CUhpRSlGgVTegDaBZHQN/IeNe6Zpl1fZQoaAZoCWgPQwgz4Zf6gX2rQJSGlFKUaBVN6ANoFkdA39BbhyKekHV9lChoBmgJaA9DCAhb7PZJCJdAlIaUUpRoFU27AWgWR0Df0+rsa86FdX2UKGgGaAloD0MIn6pCAxmRq0CUhpRSlGgVTegDaBZHQN/b3kgW8Ad1fZQoaAZoCWgPQwg49uy5JMSrQJSGlFKUaBVN6ANoFkdA3+PjIFNcnnV9lChoBmgJaA9DCFjlQuVPOqtAlIaUUpRoFU3oA2gWR0Df6+c8vEjxdX2UKGgGaAloD0MIInL6eg6JqECUhpRSlGgVTXUDaBZHQN/y9VKkEcN1fZQoaAZoCWgPQwhCdt7GvryrQJSGlFKUaBVN6ANoFkdA3/mvJ4SpSHV9lChoBmgJaA9DCDy858AKHaxAlIaUUpRoFU3oA2gWR0DgANKUbDMvdX2UKGgGaAloD0MIFqbvNaQXq0CUhpRSlGgVTegDaBZHQOAFXv5BTn91fZQoaAZoCWgPQwgIA8+9v/+qQJSGlFKUaBVN6ANoFkdA4AlZC0F8onV9lChoBmgJaA9DCBA7U+h826tAlIaUUpRoFU3oA2gWR0DgDKo7FsHjdX2UKGgGaAloD0MI965BX6KOqECUhpRSlGgVTW4DaBZHQOAP3VJz1bt1fZQoaAZoCWgPQwiP5PIfko2rQJSGlFKUaBVN6ANoFkdA4BPbzTOPenV9lChoBmgJaA9DCGHGFKwxzKtAlIaUUpRoFU3oA2gWR0DgF82r4nF6dX2UKGgGaAloD0MIi08BMO7Eq0CUhpRSlGgVTegDaBZHQOAbwrcO9WZ1fZQoaAZoCWgPQwjLg/QU4dyrQJSGlFKUaBVN6ANoFkdA4B/Fqh11XHV9lChoBmgJaA9DCNid7jxxVmdAlIaUUpRoFUtVaBZHQOAgGReVs1t1fZQoaAZoCWgPQwgrieyD5KirQJSGlFKUaBVN6ANoFkdA4CQX8u8K5XV9lChoBmgJaA9DCDo+WpzRD6xAlIaUUpRoFU3oA2gWR0DgKBpz5oGqdX2UKGgGaAloD0MIaD7nbm+Rq0CUhpRSlGgVTegDaBZHQOAr16Xt0FN1fZQoaAZoCWgPQwiu2F92V96rQJSGlFKUaBVN6ANoFkdA4C8lNkvsaHV9lChoBmgJaA9DCOKxn8Vq2atAlIaUUpRoFU3oA2gWR0DgMxnoHLRsdX2UKGgGaAloD0MIxTvAky7dq0CUhpRSlGgVTegDaBZHQOA3Fevjfel1fZQoaAZoCWgPQwjMXUvIv/erQJSGlFKUaBVN6ANoFkdA4DsZa+WWyHV9lChoBmgJaA9DCBReglNf7KtAlIaUUpRoFU3oA2gWR0DgPxpYHPeIdX2UKGgGaAloD0MISdi3k+D+q0CUhpRSlGgVTegDaBZHQOBDGiaG5+Z1fZQoaAZoCWgPQwgZOKCl4ySrQJSGlFKUaBVN0gNoFkdA4EcBkleF+XV9lChoBmgJaA9DCEMAcOzZHKxAlIaUUpRoFU3oA2gWR0DgSslva11GdX2UKGgGaAloD0MICmXh6/Ouq0CUhpRSlGgVTegDaBZHQOBOoOkrPMV1fZQoaAZoCWgPQwgjaqLP9/+rQJSGlFKUaBVN6ANoFkdA4FKYEUKzA3V9lChoBmgJaA9DCKVlpN47MqdAlIaUUpRoFU0nA2gWR0DgVdAp4rz5dX2UKGgGaAloD0MIcTlegVAYrECUhpRSlGgVTegDaBZHQOBZ1gztTk11fZQoaAZoCWgPQwgrL/mfXHiKQJSGlFKUaBVNCQFoFkdA4Frk4p2ECnV9lChoBmgJaA9DCOGX+nm7u6tAlIaUUpRoFU3oA2gWR0DgXmMWDYh/dX2UKGgGaAloD0MI5V/LK5f+q0CUhpRSlGgVTegDaBZHQOBiQolMRHx1ZS4="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 990000,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 256,
|
86 |
+
"learning_starts": 10000,
|
87 |
+
"tau": 0.005,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": 1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f42f8fae5e0>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7f42f8fae670>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7f42f8fae700>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f42f8fae790>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f42f8fa6980>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"target_entropy": -3.0,
|
110 |
+
"ent_coef": "auto",
|
111 |
+
"target_update_interval": 1,
|
112 |
+
"top_quantiles_to_drop_per_net": 5,
|
113 |
+
"batch_norm_stats": [],
|
114 |
+
"batch_norm_stats_target": []
|
115 |
+
}
|
tqc-Hopper-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8f1aea5a627632d9263d0bdf710b416e62ac9f3fe4449b0c97c6bc9bde35e07
|
3 |
+
size 1507
|
tqc-Hopper-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:884be77c09831c57133ab2c3c2285c0654dbe7d7e8353f5f31cf3bcd89733882
|
3 |
+
size 1509381
|
tqc-Hopper-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:682db91086d13cc4cee642a17c5b252c0b90c0f51490220847cacc41c917dc7a
|
3 |
+
size 747
|
tqc-Hopper-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e8cde208445e3fb20d66b4d1050fde579ab56ea09be3bee1db6d7e0211d226a
|
3 |
+
size 81171
|