Quentin Gallouédec commited on
Commit
488f9ca
1 Parent(s): 6bb7c50

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Hopper-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Hopper-v3
16
+ type: Hopper-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1564.19 +/- 100.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TRPO** Agent playing **Hopper-v3**
25
+ This is a trained model of a **TRPO** agent playing **Hopper-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo trpo --env Hopper-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo trpo --env Hopper-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo trpo --env Hopper-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo trpo --env Hopper-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo trpo --env Hopper-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo trpo --env Hopper-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('cg_damping', 0.1),
67
+ ('cg_max_steps', 25),
68
+ ('gae_lambda', 0.95),
69
+ ('gamma', 0.99),
70
+ ('learning_rate', 0.001),
71
+ ('n_critic_updates', 20),
72
+ ('n_envs', 2),
73
+ ('n_steps', 1024),
74
+ ('n_timesteps', 1000000.0),
75
+ ('normalize', True),
76
+ ('policy', 'MlpPolicy'),
77
+ ('sub_sampling_factor', 1),
78
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
79
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Hopper-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1865505172
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Hopper-v3__trpo__1865505172__1675869405
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - cg_damping
5
+ - 0.1
6
+ - - cg_max_steps
7
+ - 25
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.99
12
+ - - learning_rate
13
+ - 0.001
14
+ - - n_critic_updates
15
+ - 20
16
+ - - n_envs
17
+ - 2
18
+ - - n_steps
19
+ - 1024
20
+ - - n_timesteps
21
+ - 1000000.0
22
+ - - normalize
23
+ - true
24
+ - - policy
25
+ - MlpPolicy
26
+ - - sub_sampling_factor
27
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62615650c8ea37fd5eab07d905bb70e0a4e4c82280026efe65b5bc4d7c842101
3
+ size 1515420
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1564.1870412, "std_reward": 100.08686360962466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T13:50:23.722586"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5897ca378ac67ad13404d44a9ad191f3bee97a03c6be77aea9c61fbdb9accf47
3
+ size 92953
trpo-Hopper-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:447944cbdfe50250d36721875f1170e26e2d2f3fb01d75e7254f1f4b6601682f
3
+ size 110186
trpo-Hopper-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
trpo-Hopper-v3/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5abf253ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5abf253f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5abf254040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5abf2540d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5abf254160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5abf2541f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5abf254280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5abf254310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5abf2543a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5abf254430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5abf2544c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5abf254550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5abf255240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float64",
28
+ "_shape": [
29
+ 11
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 3
43
+ ],
44
+ "low": "[-1. -1. -1.]",
45
+ "high": "[1. 1. 1.]",
46
+ "bounded_below": "[ True True True]",
47
+ "bounded_above": "[ True True True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 1001472,
52
+ "_total_timesteps": 1000000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1675869409792098150,
57
+ "learning_rate": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
60
+ },
61
+ "tensorboard_log": "runs/Hopper-v3__trpo__1865505172__1675869405/Hopper-v3",
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVJQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJawAAAAAAAAAByG4NGT8PM/gyOqyreWcz/gkpaUHGBNvwBGsSJmDFc/kpfgmIdNYz+F19GDRmZnvwf9fqIyPXQ/hcg0bB0Qcr8dbugUVnhzP+/xdVI+zXE/YNFjbtqRSb86E/Cg7wL0P3TTk3GMp1E/+1dj1ujtcD8oda263J1NP/pxWPuNHWg/wnqZFxyqZj8u2FJlW3dqv2CZPZvMjEy/LnrmrOokZT+4zQ1mHGBNv/bW5GeRb1O/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwuGlIwBQ5R0lFKULg=="
74
+ },
75
+ "_episode_num": 0,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": -0.0014719999999999178,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv4BeuDP0mUCUhpRSlIwBbJRNowGMAXSUR0CUcaPQOWjXdX2UKGgGaAloD0MI8parH/vWk0CUhpRSlGgVTToBaBZHQJRyCYAsCkp1fZQoaAZoCWgPQwghWiva7HCQQJSGlFKUaBVNDAFoFkdAlHae/UONHnV9lChoBmgJaA9DCLUWZqEdfJhAlIaUUpRoFU1/AWgWR0CUdxIIF/x2dX2UKGgGaAloD0MIvhb03rhZlECUhpRSlGgVTUEBaBZHQJR4z9uP3i91fZQoaAZoCWgPQwj8i6Axs9GSQJSGlFKUaBVNKgFoFkdAlHkajFhod3V9lChoBmgJaA9DCA2LUdf6PJNAlIaUUpRoFU0zAWgWR0CUeubqyGBXdX2UKGgGaAloD0MIL/t1pzvdlUCUhpRSlGgVTVYBaBZHQJR7br+o99t1fZQoaAZoCWgPQwgGRl7WRG2WQJSGlFKUaBVNZgFoFkdAlIAio0hvBXV9lChoBmgJaA9DCP3YJD8iU5RAlIaUUpRoFU08AWgWR0CUgGCkXUH6dX2UKGgGaAloD0MIx735DQNzlECUhpRSlGgVTUEBaBZHQJSCToZAIIF1fZQoaAZoCWgPQwjHvI44tKeVQJSGlFKUaBVNaAFoFkdAlILQMc6vJXV9lChoBmgJaA9DCHFWRE0E85NAlIaUUpRoFU05AWgWR0CUhG4lhPTHdX2UKGgGaAloD0MIBfpEnvQWmUCUhpRSlGgVTZEBaBZHQJSFisDGLk11fZQoaAZoCWgPQwhdUN8yJ+eVQJSGlFKUaBVNVwFoFkdAlIl832mHg3V9lChoBmgJaA9DCAeZZORsbZFAlIaUUpRoFU0ZAWgWR0CUij1dPci4dX2UKGgGaAloD0MI2GSNeigLlUCUhpRSlGgVTVsBaBZHQJSL7zAeq711fZQoaAZoCWgPQwh/g/bqI5eZQJSGlFKUaBVNmwFoFkdAlI0NmQKa5XV9lChoBmgJaA9DCMV29wDdVpZAlIaUUpRoFU1kAWgWR0CUjlmyPdVOdX2UKGgGaAloD0MIzczMzIwvk0CUhpRSlGgVTS8BaBZHQJSPG9FnZkF1fZQoaAZoCWgPQwiTV+cYYHeVQJSGlFKUaBVNZAFoFkdAlJ8bu6VdHHV9lChoBmgJaA9DCLu3IjFhjpNAlIaUUpRoFU0xAWgWR0CUn5Km8/UwdX2UKGgGaAloD0MIKLou/KDgkUCUhpRSlGgVTRwBaBZHQJShID5j6N51fZQoaAZoCWgPQwg4TZ8dEBuWQJSGlFKUaBVNZAFoFkdAlKIJDVpblnV9lChoBmgJaA9DCBaiQ+DYm5FAlIaUUpRoFU0dAWgWR0CUoxRYigTRdX2UKGgGaAloD0MIdjOjH02Uk0CUhpRSlGgVTTMBaBZHQJSkIv7FbV11fZQoaAZoCWgPQwjBOLh07JSUQJSGlFKUaBVNSgFoFkdAlKfk3bVSXXV9lChoBmgJaA9DCPflzHb1W5ZAlIaUUpRoFU1hAWgWR0CUqTis4ku6dX2UKGgGaAloD0MIknTN5EuzlECUhpRSlGgVTUMBaBZHQJSqVlkH2RJ1fZQoaAZoCWgPQwjj/iPTYVOaQJSGlFKUaBVNqAFoFkdAlKxK/IsAenV9lChoBmgJaA9DCAa69gXUD5RAlIaUUpRoFU1CAWgWR0CUrJiWmgrZdX2UKGgGaAloD0MIxQPKpixLkUCUhpRSlGgVTRsBaBZHQJSuhY6nzhB1fZQoaAZoCWgPQwinXOFdvgKXQJSGlFKUaBVNbgFoFkdAlK7LL2YfGXV9lChoBmgJaA9DCJXwhF7fYpFAlIaUUpRoFU0eAWgWR0CUs0cSXdCWdX2UKGgGaAloD0MIUU60q9AblUCUhpRSlGgVTU4BaBZHQJSzWCK77Kt1fZQoaAZoCWgPQwicoiO5HPWRQJSGlFKUaBVNIwFoFkdAlLV3LV4HHHV9lChoBmgJaA9DCCxF8pUwVZVAlIaUUpRoFU1LAWgWR0CUtda37UG3dX2UKGgGaAloD0MIp5GWyssNmUCUhpRSlGgVTY4BaBZHQJS4N2ll9Sd1fZQoaAZoCWgPQwjgvaPG5BmWQJSGlFKUaBVNXgFoFkdAlLg5Huqm0nV9lChoBmgJaA9DCOqWHeK/AZFAlIaUUpRoFU0OAWgWR0CUvJ5vcafjdX2UKGgGaAloD0MImiSWlAucmECUhpRSlGgVTYsBaBZHQJS9ezMRpUR1fZQoaAZoCWgPQwhQAMXI8k+UQJSGlFKUaBVNPwFoFkdAlL7ccp9ZzXV9lChoBmgJaA9DCAKgihuXMZVAlIaUUpRoFU1OAWgWR0CUv+/ZuhsZdX2UKGgGaAloD0MIwi/18xapl0CUhpRSlGgVTXUBaBZHQJTBoI4VARl1fZQoaAZoCWgPQwgD7Q4pthaVQJSGlFKUaBVNUAFoFkdAlMJWCmMwUXV9lChoBmgJaA9DCEp+xK/YFpVAlIaUUpRoFU1hAWgWR0CUxpqgyuZDdX2UKGgGaAloD0MIuVFkrQEak0CUhpRSlGgVTS8BaBZHQJTG+fxtpEh1fZQoaAZoCWgPQwhOXmQC7nGWQJSGlFKUaBVNagFoFkdAlMkTTjNpunV9lChoBmgJaA9DCHIycasQtJZAlIaUUpRoFU10AWgWR0CUyYSMLncMdX2UKGgGaAloD0MIoUliSdmplUCUhpRSlGgVTWMBaBZHQJTLvJlrdnF1fZQoaAZoCWgPQwjlszwP7g2VQJSGlFKUaBVNTwFoFkdAlMwTGxUvPHV9lChoBmgJaA9DCLTnMjWpkJdAlIaUUpRoFU18AWgWR0CU0PLt/nW8dX2UKGgGaAloD0MIyTmxh1bDlUCUhpRSlGgVTV4BaBZHQJTRC07bL2Z1fZQoaAZoCWgPQwjBN02fzVWWQJSGlFKUaBVNaQFoFkdAlNNqPfbblHV9lChoBmgJaA9DCD6T/fN0XJZAlIaUUpRoFU1rAWgWR0CU04XGOuJUdX2UKGgGaAloD0MIiV5GsczSk0CUhpRSlGgVTTkBaBZHQJTVsRoRIz51fZQoaAZoCWgPQwjuBtFa0T+TQJSGlFKUaBVNLwFoFkdAlNW9oJzDGnV9lChoBmgJaA9DCMr8o28yCJRAlIaUUpRoFU05AWgWR0CU2oJW/8EWdX2UKGgGaAloD0MIlgfpKeLzlUCUhpRSlGgVTVkBaBZHQJTaxEVnEl51fZQoaAZoCWgPQwhYGvhRvQuVQJSGlFKUaBVNSQFoFkdAlNzBmkFfRnV9lChoBmgJaA9DCF2kUBZeYpNAlIaUUpRoFU05AWgWR0CU3Oh6By0bdX2UKGgGaAloD0MIXW+bqQCJlkCUhpRSlGgVTW0BaBZHQJTfJb3XZoR1fZQoaAZoCWgPQwh5d2SsVvSVQJSGlFKUaBVNWQFoFkdAlN8oqgAZKnV9lChoBmgJaA9DCHwrEhN03JJAlIaUUpRoFU0sAWgWR0CU44ZntfG/dX2UKGgGaAloD0MIahX9odkhmUCUhpRSlGgVTZQBaBZHQJTkMXQ+lj51fZQoaAZoCWgPQwiX/5B+G46UQJSGlFKUaBVNQgFoFkdAlOWexB3RonV9lChoBmgJaA9DCIOhDisc0JJAlIaUUpRoFU0nAWgWR0CU5hzPKMefdX2UKGgGaAloD0MIUBcplMULlkCUhpRSlGgVTWQBaBZHQJTn7ot+TeR1fZQoaAZoCWgPQwjCUfLqLD2VQJSGlFKUaBVNXwFoFkdAlOhkhNdqtnV9lChoBmgJaA9DCKeVQiAXP5VAlIaUUpRoFU1LAWgWR0CU7IPoV2zOdX2UKGgGaAloD0MIqyaIug/2kECUhpRSlGgVTRABaBZHQJTsl/NJOFh1fZQoaAZoCWgPQwiB6EmZdMGQQJSGlFKUaBVNDQFoFkdAlO5HscABDHV9lChoBmgJaA9DCBcrajC9DJFAlIaUUpRoFU0TAWgWR0CU7mXFcY65dX2UKGgGaAloD0MI0PI8uHs0lECUhpRSlGgVTT8BaBZHQJTwXcTJyQx1fZQoaAZoCWgPQwgsuYrFf86TQJSGlFKUaBVNOAFoFkdAlPBv+0gKW3V9lChoBmgJaA9DCN9RY0I88JBAlIaUUpRoFU0TAWgWR0CU9KqUeMhpdX2UKGgGaAloD0MIkUjb+NNxk0CUhpRSlGgVTTMBaBZHQJT00ACGN711fZQoaAZoCWgPQwikUYGTDXmTQJSGlFKUaBVNMgFoFkdAlPau7UXpGHV9lChoBmgJaA9DCKCnAYP0GpZAlIaUUpRoFU1fAWgWR0CU9x+GGmDUdX2UKGgGaAloD0MI170ViXlBlECUhpRSlGgVTT4BaBZHQJT4xhd+ocd1fZQoaAZoCWgPQwg74Lpi1g6QQJSGlFKUaBVNAgFoFkdAlPjRwIdELHV9lChoBmgJaA9DCJDaxMntPpZAlIaUUpRoFU1eAWgWR0CU/X/A0sOHdX2UKGgGaAloD0MI+DJRhMR9lkCUhpRSlGgVTWYBaBZHQJT9mKAJ9iN1fZQoaAZoCWgPQwjZ7h6ga4OTQJSGlFKUaBVNMgFoFkdAlP+EYCQtBnV9lChoBmgJaA9DCD1i9NyChpdAlIaUUpRoFU18AWgWR0CVABtBv73xdX2UKGgGaAloD0MIvymsVABokkCUhpRSlGgVTScBaBZHQJUBdrRBu4x1fZQoaAZoCWgPQwhmoDL+nWSVQJSGlFKUaBVNTgFoFkdAlQJN0JWvKXV9lChoBmgJaA9DCDl/EwpB5pJAlIaUUpRoFU0tAWgWR0CVA3KUFB6bdX2UKGgGaAloD0MIGAYsuYqWmUCUhpRSlGgVTZUBaBZHQJUHZU+9rXV1fZQoaAZoCWgPQwj4im69duiSQJSGlFKUaBVNKgFoFkdAlQfV+NLlFXV9lChoBmgJaA9DCJ60cFmlKpZAlIaUUpRoFU1cAWgWR0CVCaxagVXWdX2UKGgGaAloD0MIuCBblm+nlUCUhpRSlGgVTVUBaBZHQJUKENe+mFd1fZQoaAZoCWgPQwjBkNWtDq2QQJSGlFKUaBVNDAFoFkdAlQvTSPU8WHV9lChoBmgJaA9DCNl22hqBYJVAlIaUUpRoFU1UAWgWR0CVC+isny/cdX2UKGgGaAloD0MIBvcDHshxlUCUhpRSlGgVTVMBaBZHQJUQjTnaFmF1fZQoaAZoCWgPQwg/G7luqtmVQJSGlFKUaBVNZgFoFkdAlRCY0ygwoXV9lChoBmgJaA9DCIV80LOp/ZNAlIaUUpRoFU06AWgWR0CVHPI91U2ldX2UKGgGaAloD0MIeo1dooqJlkCUhpRSlGgVTW0BaBZHQJUdPYXfqHJ1fZQoaAZoCWgPQwhCJhk5u6aUQJSGlFKUaBVNQwFoFkdAlR8T7di2D3V9lChoBmgJaA9DCCjueJNPA5ZAlIaUUpRoFU1qAWgWR0CVH6FmWdEtdWUu"
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 489,
88
+ "n_steps": 1024,
89
+ "gamma": 0.99,
90
+ "gae_lambda": 0.95,
91
+ "ent_coef": 0.0,
92
+ "vf_coef": 0.0,
93
+ "max_grad_norm": 0.0,
94
+ "normalize_advantage": true,
95
+ "batch_size": 128,
96
+ "cg_max_steps": 25,
97
+ "cg_damping": 0.1,
98
+ "line_search_shrinking_factor": 0.8,
99
+ "line_search_max_iter": 10,
100
+ "target_kl": 0.01,
101
+ "n_critic_updates": 20,
102
+ "sub_sampling_factor": 1
103
+ }
trpo-Hopper-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:573013ceea605bd3c90d731f792aec7bd80df4b7a7f898f32d876bd7e949f228
3
+ size 44975
trpo-Hopper-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95f74e35997f01ebf906473859fe8df4d8e9c6d5218a9fb464b7deacc2529aff
3
+ size 44926
trpo-Hopper-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-Hopper-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b72d2b82cff84a381599f1d4b908bc0a3bec5f9d608b6a1e9231dd2f301f32ce
3
+ size 4539