Quentin Gallouédec
commited on
Commit
•
a5ea283
1
Parent(s):
7195e92
Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +83 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Hopper-v3.zip +3 -0
- trpo-Hopper-v3/_stable_baselines3_version +1 -0
- trpo-Hopper-v3/data +103 -0
- trpo-Hopper-v3/policy.optimizer.pth +3 -0
- trpo-Hopper-v3/policy.pth +3 -0
- trpo-Hopper-v3/pytorch_variables.pth +3 -0
- trpo-Hopper-v3/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Hopper-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Hopper-v3
|
16 |
+
type: Hopper-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 3754.25 +/- 2.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TRPO** Agent playing **Hopper-v3**
|
25 |
+
This is a trained model of a **TRPO** agent playing **Hopper-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Hopper-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo trpo --env Hopper-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Hopper-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo trpo --env Hopper-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo trpo --env Hopper-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo trpo --env Hopper-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('cg_damping', 0.1),
|
67 |
+
('cg_max_steps', 25),
|
68 |
+
('gae_lambda', 0.95),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('learning_rate', 0.001),
|
71 |
+
('n_critic_updates', 20),
|
72 |
+
('n_envs', 2),
|
73 |
+
('n_steps', 1024),
|
74 |
+
('n_timesteps', 1000000.0),
|
75 |
+
('normalize', True),
|
76 |
+
('policy', 'MlpPolicy'),
|
77 |
+
('sub_sampling_factor', 1),
|
78 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Hopper-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2844326092
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Hopper-v3__trpo__2844326092__1675872192
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - cg_damping
|
5 |
+
- 0.1
|
6 |
+
- - cg_max_steps
|
7 |
+
- 25
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 0.001
|
14 |
+
- - n_critic_updates
|
15 |
+
- 20
|
16 |
+
- - n_envs
|
17 |
+
- 2
|
18 |
+
- - n_steps
|
19 |
+
- 1024
|
20 |
+
- - n_timesteps
|
21 |
+
- 1000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - sub_sampling_factor
|
27 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27fb6cc82f01599f092418965ad5f9f8fee840f04d6aeb4d88ee7aa8356c50cc
|
3 |
+
size 1455700
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3754.2499130999995, "std_reward": 2.135823619803711, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T13:52:29.678728"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be66ededa1e9d9e84b71aa35d440fe0265e1684db8bd4ad043793d6ecff1fabc
|
3 |
+
size 78449
|
trpo-Hopper-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2db4a05186c83df5b6fda2380d9aa91ac5fa08f0f600c5caedcc12fbf3db3a1e
|
3 |
+
size 110186
|
trpo-Hopper-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
trpo-Hopper-v3/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f06263d2ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06263d2f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06263d4040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06263d40d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f06263d4160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f06263d41f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f06263d4280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06263d4310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f06263d43a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06263d4430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06263d44c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06263d4550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f06267f5980>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float64",
|
28 |
+
"_shape": [
|
29 |
+
11
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
3
|
43 |
+
],
|
44 |
+
"low": "[-1. -1. -1.]",
|
45 |
+
"high": "[1. 1. 1.]",
|
46 |
+
"bounded_below": "[ True True True]",
|
47 |
+
"bounded_above": "[ True True True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 1001472,
|
52 |
+
"_total_timesteps": 1000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1675872196237441564,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
60 |
+
},
|
61 |
+
"tensorboard_log": "runs/Hopper-v3__trpo__2844326092__1675872192/Hopper-v3",
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL3FnYWxsb3VlL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVJQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJawAAAAAAAAAHUre4ZD9PM/mJOtinXcRL+DEEOf+WVzPwVHO+H8/2O/21Sqj30dcb/KQLCWf2twv3y3mCA30mY/dg4BqKMwaD82HN5cvrNsv4K+SiD+q2s/sICHD8D8SD9rG8LQPPDzP8q09g+FL22/eN4JjW0Bcb9mJBIQ15FxvzYfz2XJeGi/MHBlJxKGT7+U+9EelQ5sv5KueGuagW+/0pOvaUvyaz+NFgO37FdhvzqhidLaPW0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwuGlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITu/i/djinkCUhpRSlIwBbJRNHAKMAXSUR0CUtLcVgx8EdX2UKGgGaAloD0MInBTmPRZvpUCUhpRSlGgVTeACaBZHQJS4wPlMh5h1fZQoaAZoCWgPQwh80/TZYVOtQJSGlFKUaBVN6ANoFkdAlL5jnvDxb3V9lChoBmgJaA9DCK1POSYjqapAlIaUUpRoFU2OA2gWR0CUvxLdepn6dX2UKGgGaAloD0MISnoYWp0VpECUhpRSlGgVTa8CaBZHQJTGosH0K7Z1fZQoaAZoCWgPQwiFKF/QWvmrQJSGlFKUaBVNqwNoFkdAlMeubI91U3V9lChoBmgJaA9DCGcOSS0k3ZVAlIaUUpRoFU2BAWgWR0CUyUF9roGIdX2UKGgGaAloD0MIdqc7TwyfpUCUhpRSlGgVTeICaBZHQJTPl0o0ALl1fZQoaAZoCWgPQwjhYdo3n0OiQJSGlFKUaBVNcwJoFkdAlNBrNjbzsnV9lChoBmgJaA9DCGVtUzz2MaBAlIaUUpRoFU0yAmgWR0CU1ghuwX67dX2UKGgGaAloD0MIWTDxR7GglUCUhpRSlGgVTYABaBZHQJTYwZP2wmp1fZQoaAZoCWgPQwjt1FxuABatQJSGlFKUaBVN6ANoFkdAlNoWxIJ7cHV9lChoBmgJaA9DCM7/q468k5hAlIaUUpRoFU2vAWgWR0CU3RE7nxJ/dX2UKGgGaAloD0MIHjLlQ7AgrUCUhpRSlGgVTegDaBZHQJTiDnB+F111fZQoaAZoCWgPQwidY0D2yp+ZQJSGlFKUaBVNwAFoFkdAlOT/wZwXInV9lChoBmgJaA9DCGraxTQDGa1AlIaUUpRoFU3oA2gWR0CU5gr6+FlDdX2UKGgGaAloD0MII57sZh4ErUCUhpRSlGgVTegDaBZHQJTuA4YJmd11fZQoaAZoCWgPQwgZOQt7avysQJSGlFKUaBVN6ANoFkdAlO8Q/5ckdHV9lChoBmgJaA9DCOfgmdDkR6RAlIaUUpRoFU2xAmgWR0CU9PV9Wp6ydX2UKGgGaAloD0MI/n4xW7JglUCUhpRSlGgVTXoBaBZHQJT3bphWo3t1fZQoaAZoCWgPQwgLnGwDjyOrQJSGlFKUaBVNkwNoFkdAlPd4H5aePXV9lChoBmgJaA9DCBU5RNz8MZNAlIaUUpRoFU1ZAWgWR0CU/CYpDu0DdX2UKGgGaAloD0MIzt2ul0bRmUCUhpRSlGgVTcQBaBZHQJT80Vj7Q9l1fZQoaAZoCWgPQwjr/UY7LguWQJSGlFKUaBVNiAFoFkdAlP64LThHb3V9lChoBmgJaA9DCJ1IMNUU8qJAlIaUUpRoFU2LAmgWR0CVARSl3yI6dX2UKGgGaAloD0MIn1kSoCYtmkCUhpRSlGgVTcoBaBZHQJUGg8/2TPl1fZQoaAZoCWgPQwiPUDOkGhutQJSGlFKUaBVN6ANoFkdAlQe29pRGdHV9lChoBmgJaA9DCDvgumJ2eKRAlIaUUpRoFU3AAmgWR0CVDZct5D7ZdX2UKGgGaAloD0MIDFhyFZMOrUCUhpRSlGgVTegDaBZHQJUQvdpItlJ1fZQoaAZoCWgPQwjjwRa7TQKtQJSGlFKUaBVN6ANoFkdAlTFC6MBIWnV9lChoBmgJaA9DCPNV8rHLCK1AlIaUUpRoFU3oA2gWR0CVNIDbJwKjdX2UKGgGaAloD0MIoZ+p113/rECUhpRSlGgVTegDaBZHQJU4EhV2icp1fZQoaAZoCWgPQwiERUWcBhetQJSGlFKUaBVN6ANoFkdAlT4fgvUSZnV9lChoBmgJaA9DCIMVp1rjIK1AlIaUUpRoFU3oA2gWR0CVQbQ40dildX2UKGgGaAloD0MIAgzLn2/tn0CUhpRSlGgVTSkCaBZHQJVEovboKUp1fZQoaAZoCWgPQwj3cp8cRZuoQJSGlFKUaBVNQwNoFkdAlUp4NEw353V9lChoBmgJaA9DCEYnS62XNa1AlIaUUpRoFU3oA2gWR0CVS2Kk2xY8dX2UKGgGaAloD0MIjzaOWIPkrECUhpRSlGgVTegDaBZHQJVUH/3nIQx1fZQoaAZoCWgPQwhZMsfy/tqsQJSGlFKUaBVN6ANoFkdAlVUKaPS2IHV9lChoBmgJaA9DCKWisfa3AK1AlIaUUpRoFU3oA2gWR0CVXcbvgFX8dX2UKGgGaAloD0MIzbBR1pf9rECUhpRSlGgVTegDaBZHQJVetCCz1K51fZQoaAZoCWgPQwgEj2/vOiWtQJSGlFKUaBVN6ANoFkdAlWdvvWpZOnV9lChoBmgJaA9DCNmVlpHqMa1AlIaUUpRoFU3oA2gWR0CVaFoL5RCQdX2UKGgGaAloD0MIR1m/mQCsoUCUhpRSlGgVTV8CaBZHQJVvEjMV1wJ1fZQoaAZoCWgPQwhlpx/U1WatQJSGlFKUaBVN6ANoFkdAlXEJkXk5qHV9lChoBmgJaA9DCPxUFRqIupVAlIaUUpRoFU2TAWgWR0CVdnnTy8SPdX2UKGgGaAloD0MIYaQXtSNZpkCUhpRSlGgVTfYCaBZHQJV3IwlByCF1fZQoaAZoCWgPQwhNLVvrC86kQJSGlFKUaBVNwgJoFkdAlXtqkdmxuHV9lChoBmgJaA9DCIwxsI4zyKxAlIaUUpRoFU3HA2gWR0CVgI9wm3OOdX2UKGgGaAloD0MIrtSzIARHlkCUhpRSlGgVTYgBaBZHQJWAzSG8Emp1fZQoaAZoCWgPQwj/ImjM1EabQJSGlFKUaBVN2gFoFkdAlYQFw5vLo3V9lChoBmgJaA9DCAKetHC5l6NAlIaUUpRoFU2aAmgWR0CVhRihnJ1adX2UKGgGaAloD0MIxY8xd21blkCUhpRSlGgVTYoBaBZHQJWKm1lXiit1fZQoaAZoCWgPQwgHms+5kwCjQJSGlFKUaBVNjgJoFkdAlYtQTEit73V9lChoBmgJaA9DCFH3AUhdmptAlIaUUpRoFU3iAWgWR0CVjeiG34KydX2UKGgGaAloD0MIdSFWfwQfpECUhpRSlGgVTa0CaBZHQJWQAI7eVLV1fZQoaAZoCWgPQwiCc0aUNmWbQJSGlFKUaBVN3QFoFkdAlZP+EAYHgXV9lChoBmgJaA9DCKpE2VuCz6FAlIaUUpRoFU1kAmgWR0CVlv7fYSQHdX2UKGgGaAloD0MITkUqjH09okCUhpRSlGgVTXYCaBZHQJWYSIAOrhl1fZQoaAZoCWgPQwizeRwGmz2lQJSGlFKUaBVN0AJoFkdAlaAHPE87p3V9lChoBmgJaA9DCMFTyJUyY61AlIaUUpRoFU3oA2gWR0CVoKZdv864dX2UKGgGaAloD0MI3c6+8jC6lkCUhpRSlGgVTZIBaBZHQJWiyHSF49p1fZQoaAZoCWgPQwiZS6q2O9eYQJSGlFKUaBVNtgFoFkdAlaOmBz3h43V9lChoBmgJaA9DCE7yI35lCKRAlIaUUpRoFU2pAmgWR0CVvfyd4FA3dX2UKGgGaAloD0MI04OCUnxWoECUhpRSlGgVTTUCaBZHQJW+Dq8lHBl1fZQoaAZoCWgPQwg8hzJUpWmYQJSGlFKUaBVNpwFoFkdAlcC6wQlKLHV9lChoBmgJaA9DCAA5YcLo3JdAlIaUUpRoFU2eAWgWR0CVwL2OhkAhdX2UKGgGaAloD0MIfdCzWVWkm0CUhpRSlGgVTeABaBZHQJXGPKxLTQV1fZQoaAZoCWgPQwiPHVTi+jujQJSGlFKUaBVNkQJoFkdAlcdjCHh0hnV9lChoBmgJaA9DCKDGvfkNfpxAlIaUUpRoFU3tAWgWR0CVzPUJv5xjdX2UKGgGaAloD0MIX36nyUwZqECUhpRSlGgVTSsDaBZHQJXN451eSjh1fZQoaAZoCWgPQwgpzHuc2W2bQJSGlFKUaBVN3gFoFkdAldAS0rsjV3V9lChoBmgJaA9DCFUUr7K2wZtAlIaUUpRoFU3hAWgWR0CV0zE3Kji5dX2UKGgGaAloD0MIE7ngDDbXqUCUhpRSlGgVTWwDaBZHQJXV+KWLP2R1fZQoaAZoCWgPQwi1xMpodGKZQJSGlFKUaBVNvAFoFkdAldh8pG4I8nV9lChoBmgJaA9DCBu4A3VKbKNAlIaUUpRoFU2XAmgWR0CV2lCIDYAbdX2UKGgGaAloD0MI4BKAf/oCrUCUhpRSlGgVTegDaBZHQJXhcs9SuQp1fZQoaAZoCWgPQwgZj1IJn0CtQJSGlFKUaBVN6ANoFkdAleNHPE87p3V9lChoBmgJaA9DCIaNsn6j+JlAlIaUUpRoFU3HAWgWR0CV5G5I6KcedX2UKGgGaAloD0MIKLaCpmVKmECUhpRSlGgVTasBaBZHQJXoemIj4Yd1fZQoaAZoCWgPQwgZAKq4gTuQQJSGlFKUaBVNKQFoFkdAlejJs0pEyHV9lChoBmgJaA9DCLoQqz9i6KJAlIaUUpRoFU2KAmgWR0CV7U6nR9gGdX2UKGgGaAloD0MIgH7fv7EDrUCUhpRSlGgVTegDaBZHQJXyOAMDwH91fZQoaAZoCWgPQwjPvvIgVVOjQJSGlFKUaBVNkwJoFkdAlfayeAd4mnV9lChoBmgJaA9DCMWQnExMUK1AlIaUUpRoFU3oA2gWR0CV9vR3u/lAdX2UKGgGaAloD0MIWmYRim02pECUhpRSlGgVTbECaBZHQJX+abutwJh1fZQoaAZoCWgPQwghrTHobCGtQJSGlFKUaBVN6ANoFkdAlgBHAM2FWXV9lChoBmgJaA9DCHzT9NnBO61AlIaUUpRoFU3oA2gWR0CWCAXw9aEBdX2UKGgGaAloD0MIQu23dpoIrUCUhpRSlGgVTegDaBZHQJYJ4r3Cbc51fZQoaAZoCWgPQwhd3hyuJSeYQJSGlFKUaBVNpgFoFkdAlg9ywnpjc3V9lChoBmgJaA9DCBVT6SdMuKVAlIaUUpRoFU3jAmgWR0CWD8bKRuCPdX2UKGgGaAloD0MIZDxKJSyIn0CUhpRSlGgVTSECaBZHQJYTl2Pkq+d1fZQoaAZoCWgPQwgIdZFC+R+kQJSGlFKUaBVNsQJoFkdAlhRGDxsl9nV9lChoBmgJaA9DCAbWcfyQGq1AlIaUUpRoFU3oA2gWR0CWHUIj4YaYdX2UKGgGaAloD0MIiV3b2zUIrUCUhpRSlGgVTegDaBZHQJYd8WIoE0V1fZQoaAZoCWgPQwhc4zPZh5KoQJSGlFKUaBVNQQNoFkdAliZmQCCBgHV9lChoBmgJaA9DCBSUopWbMa1AlIaUUpRoFU3oA2gWR0CWJubjtG/fdX2UKGgGaAloD0MI+rmhKauemECUhpRSlGgVTbIBaBZHQJYse0ngHeJ1fZQoaAZoCWgPQwh6qkNufiStQJSGlFKUaBVN6ANoFkdAlkranrIHT3V9lChoBmgJaA9DCJIhx9YbTa1AlIaUUpRoFU3oA2gWR0CWTj7Kq4pddWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 489,
|
88 |
+
"n_steps": 1024,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 0.95,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.0,
|
93 |
+
"max_grad_norm": 0.0,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"batch_size": 128,
|
96 |
+
"cg_max_steps": 25,
|
97 |
+
"cg_damping": 0.1,
|
98 |
+
"line_search_shrinking_factor": 0.8,
|
99 |
+
"line_search_max_iter": 10,
|
100 |
+
"target_kl": 0.01,
|
101 |
+
"n_critic_updates": 20,
|
102 |
+
"sub_sampling_factor": 1
|
103 |
+
}
|
trpo-Hopper-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a526c70c0ddd72cc0f694e1c1a1934ccadfdac3f00381c273f28c5555443b794
|
3 |
+
size 44975
|
trpo-Hopper-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16ce4eee0535443eb83a39bb2b2caeb1b75118d08bdfa35755e5b3ae16584efb
|
3 |
+
size 44926
|
trpo-Hopper-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Hopper-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1bf5a7f28233e634ed9170184cc27aec56bb4c8e3b3b172f628c905f8e5b7e8
|
3 |
+
size 4539
|