Quentin Gallouédec
commited on
Commit
•
a44dfee
1
Parent(s):
bfd962b
Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +83 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Humanoid-v3.zip +3 -0
- trpo-Humanoid-v3/_stable_baselines3_version +1 -0
- trpo-Humanoid-v3/data +103 -0
- trpo-Humanoid-v3/policy.optimizer.pth +3 -0
- trpo-Humanoid-v3/policy.pth +3 -0
- trpo-Humanoid-v3/pytorch_variables.pth +3 -0
- trpo-Humanoid-v3/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Humanoid-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Humanoid-v3
|
16 |
+
type: Humanoid-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 3706.29 +/- 1857.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TRPO** Agent playing **Humanoid-v3**
|
25 |
+
This is a trained model of a **TRPO** agent playing **Humanoid-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Humanoid-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo trpo --env Humanoid-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Humanoid-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo trpo --env Humanoid-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo trpo --env Humanoid-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo trpo --env Humanoid-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('cg_damping', 0.1),
|
67 |
+
('cg_max_steps', 25),
|
68 |
+
('gae_lambda', 0.95),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('learning_rate', 0.001),
|
71 |
+
('n_critic_updates', 20),
|
72 |
+
('n_envs', 2),
|
73 |
+
('n_steps', 1024),
|
74 |
+
('n_timesteps', 2000000.0),
|
75 |
+
('normalize', True),
|
76 |
+
('policy', 'MlpPolicy'),
|
77 |
+
('sub_sampling_factor', 1),
|
78 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Humanoid-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 4106392303
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Humanoid-v3__trpo__4106392303__1675898901
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - cg_damping
|
5 |
+
- 0.1
|
6 |
+
- - cg_max_steps
|
7 |
+
- 25
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 0.001
|
14 |
+
- - n_critic_updates
|
15 |
+
- 20
|
16 |
+
- - n_envs
|
17 |
+
- 2
|
18 |
+
- - n_steps
|
19 |
+
- 1024
|
20 |
+
- - n_timesteps
|
21 |
+
- 2000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - sub_sampling_factor
|
27 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef786fa833dc3944989b4d90343dfde1d1888107c6637008237e9df1576c068c
|
3 |
+
size 1550689
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3706.2932895, "std_reward": 1857.035305513661, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T16:12:42.433531"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74767adce086bf17c7bdda2b67086b22c46d1efaaaf72dc69fa676f425ee48df
|
3 |
+
size 343877
|
trpo-Humanoid-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36729959a379e73698e4a2ab7c28148289ae21b8a33df62bbb3cf5cb086929aa
|
3 |
+
size 512576
|
trpo-Humanoid-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
trpo-Humanoid-v3/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2457b53ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2457b53f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2457b55040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2457b550d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2457b55160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2457b551f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2457b55280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2457b55310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2457b553a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2457b55430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2457b554c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2457b55550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2457b52c80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVxBsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRNeAGFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsALAAAAAAAAAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaApNeAGFlIwBQ5R0lFKUjARoaWdolGgSKJbACwAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lGgKTXgBhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolngBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYk14AYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJZ4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFNeAGFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float64",
|
28 |
+
"_shape": [
|
29 |
+
376
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVpAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWRAAAAAAAAADNzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvpRoCksRhZSMAUOUdJRSlIwEaGlnaJRoEiiWRAAAAAAAAADNzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPpRoCksRhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhEAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLEYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYRAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBlGghSxGFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
17
|
43 |
+
],
|
44 |
+
"low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]",
|
45 |
+
"high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]",
|
46 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
|
47 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 2000896,
|
52 |
+
"_total_timesteps": 2000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1675898906314064304,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
60 |
+
},
|
61 |
+
"tensorboard_log": "runs/Humanoid-v3__trpo__4106392303__1675898901/Humanoid-v3",
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWV9hcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAFwAAAAAAANAZm2XYjPY/4+z0R4b/7z8/zgoz4gZ/v1orY1w0Hnu/gG4ZeJmVb79Cv/s3zj50P8QvZXH1eW8/gNpksFsFIL8OE3L94kx5P3fYl2kbcIC/CyQuVYxWgD/YYlpI4ghyP+zOL84FjYC/i/srualbgz92gA5NRZp1PwbpqrRq1G+/+OZa32V1g7/HeSbzqCWDP1p8Glvn/nq/4GNkg23uXD/3RD64/zCEv3C8DTbCiFo/orZXeDwOdz8AB+nOGzV1P3gxF874zFw/eTEbutKlgT/At7Wyf+JZv+IE5TK9Qn6/1zPg3pAMgD9YXUNQz4liPyT2D8JCHWC/7uB9kyIxfb9ieUJMh1GAv4xpiZ2TEms/oJrsTAz+Tr9C1/puYRtkv74u+8aEvHq/AO3YQoipWT8KKKIWZdxlvyEa81DWN3O/QuCBmt6Aar+CBTukaPR/PwrHRCC1pXE/VjLKmKOUfT9qGU7MiRNzPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnhEBuwbQAUAC/riYe8ABQP6PZve5XaM/DA8JfbZxUj84dxfN/7C3P55wF1A6oZ2/mPSFyA8uyL879dSmnParP7puWk8jlxBAw47eh+ekIEBrYZkFIk62P5e7/Tp5u7U/EkjzIFv2gT8ak8TiylsaP05KMme16IU/xVlTpnNSSb8nnxgZXKqrv3H/nI2JI3E/GUeeaFXL2T/9PYRdOEkAQBZe0L3meaY/sLPrKQA6pT+KPIOoECupP79teFOAZiO/dw4FNo5cgT+sHotr9zMzP12Xs9e1m9C/te8TcsfyY78yUfs0o3jIPxwZbgZBaRdA6MTSs1Gbzz8SQDO3T1/KP7AH9xZiaqs/+mMOIbMvhL+Ge0rMf5CRv6/mXUFpjbO/0XaWZO3Rub9P9Uet60Xcv8dfcOGAaem/e/BsaysaEkCQdD4KO/XrP2ql5JT3NOs/Pfap6jYBnT/csShANodyvw9EZDzBlJq//NM6UYEdwr90sCULhB2ov/oRDuMoMdC/wOgA1OuF979vu1s8WQ8FQIhtLA2BmfA/tFgBP71V8D+ol/J+f9eVP36r2HdIdWW/wTe+HNbFlL8V6abiKs3Av1gqI4htY5u/HY4MBPomxr/t3tvL2nH1v7uyzL46Rvw/OuOIqkmszz+o+fh3+fPKP7ggDbWcLKk/Bfyv2Uxngj8iZF56nP6QvyqnbBJforI/00d6Wh/BuL99EXGc99faP8HbKCDt1+m/e/BsaysaEkDiX+X+2g/sP04QfWPieus/rj2x0xeBlz+EJC2lxPxvP2+ryE5/NZq/Bji0J90KwD/7ngnj84envzapTu8Nnsw/tR7CUEil979vu1s8WQ8FQHY4ypm1pvA/c2Gc8A528D/C4IaSxyORP4HGYNSMHmM/HlKYY//Klb97OoOeYMK8PwgfcGKDn5y/S6PbTuniwj9QEJDgBIf1v7uyzL46Rvw/k1bB/eDm2j/3C8YEfh7VP6uGH1Kkm7w/58lEmZZpnD/im2uraYOjv1gCvf2XtsU/JP3I9CtTuD+f+E24NgfZvzpNg2Mbq+Y/bPx15ESB+T85s+YZG//UP9gB+s8XT9Y/mVm1TFDtxD/6LrIPoZSyP2iZ/xYWjcO/gNQO+r4dwD9kdnXrcr/UP1jPwjXOItK/s+d8LN2X4T/D3rPYaSzzP/KN5nsin9o/BtE/Yop01D+R+p54o52+P9ZntHfSyp6/PjFjCTZnpL+ybtjloSHGv+HYW1uH8rk/02Ch9kv52T+Ds5m/+j7mP2z8deREgfk/2Csj+3am1D+K59/TMt/VPxXNaHJmeMU/oCtIivE7s7+A9YT5aGfDv1H0v9TTK8C/2UfOu8rw1D/1khgiW4fSP+/S+1e0SuE/w96z2Gks8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdU+m84dGBP3R5JlOZy1y/n8br5P6vfb8w6TfIUy16P2BpXeY9eYI/HW5zJumFXD/lZfXTsY6BP3QhXwX5dkQ/3yxDW4gXQj+dPd0FZ7V3PwEx/jGq14I/0uM38LF1Wz+PQsnUEw97P1GgFAj1oUQ/fItaprv4QD8p+5NOprR3P7q5X3sRToI/UCskEPB9Wz9zuxptFqg2vxq+KnD5x28/dGwmnmUjf7957iLixCN7P/pFpzEF/IE/8AKPa0hpTT/zQ3KT4/w1v7IFDjilw3M/hCNuIlAsf7/h1oDl36V8P17pzALa+YE/coJgL9nQTD/zQ3KT4/w1v7IFDjilw3M/hCNuIlAsf7/h1oDl36V8P17pzALa+YE/coJgL9nQTD83Mpv1xVyCP24FPIwRU2I/YMdbfoj7fD8EKKDvGmt6P5BNYuzck4I/0tgjrIANVz8RObXw0G2CP+4+RE90F3Q/pdE5W8bnfD9qiZZQgbB+P5ClDpQBjYI/BRvS18IuVj8RObXw0G2CP+4+RE90F3Q/pdE5W8bnfD9qiZZQgbB+P5ClDpQBjYI/BRvS18IuVj9F2p49DkN0P4qVeRHdkFe/QFbXX9uZh79Ih1nKhlp8P2RWb0MKj3w/RO3oEdlfUj+MDJUkhZxzP07lw0679Xu/8rVQ780ZeL9QHmlJYQR8P8Q/IApJmng/5KpET+DBKT/9FM3cVOCIP4yD78XZMls/YE5/zpLqOL/lCtG+W+93P84DAr2DYYY/xFRS05t3UT9fRfCHJeyIP3rV4hFcflu/nAQNGPu3bb/OdPZUitx3PxiPdaDqgYc/ySOnRgxnQD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9j+NJcNP9j9fr0ihWv/vPzMbY739aH8/Wbxp249VhD9fE5gjW2lCvwZiREt6/2q/6KKp3fTbaD/of5jzaV1nP6AdW1D1ojo/vk50G89kdT8mA7QHs5p8P1Tp8jUy9ny/kBhsbsKnUj8CcU27qz16v6CDlAlnlEm/0nTo1ysWcb/AdfEOHfk0Pw3J4wPtUIO/IRjuLHWFgj9oBYJasJKAvzCh9URrfkU/LjBeCsDdYr92Us5kbV1xP8hb87jWsGi/Gg3t6Wync78Q/iwzk9BDvy28TeDx64O/EMdWsjmmQL9SkFYhZOtmv+aIOmEh8Xc/xc2OLyHrgj9Sxe5FU3R/vyL8rx3tLHs/AEwscfNK8z4oFcsGbb5VvyRmDoJgxnK/Qu42A35kcD+ASASYqndEv82vcGLp3Hu/jy74m3Emcb/GRTdjZgV7v/dMvP7GXYS/5JA+m1h/cT9gj3A7Jp1NP6NZz8FNe4A/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJFgLxkd4BQLJPTy0NxwFAF+TST5iUoT+8VPLKL1k4v2Cq5MQb35U/ArbcoCZYoj/CQUicdM+rv7uG8lqGeLG/FJGnOXieEEDDjt6H56QgQHN4yQROjLY/RHyAaSfRtT+e1/wcv8SAP/rGa+28iiW/zYSa0iHNgD8uhw9Z6OBWP8bRh/UOGKW/4cMROMDffb9qHJOowPHZP/09hF04SQBAfvPlsMDXpj+vRMCDVVWlP2nTOqWX6Kg/cOood+HxLr/J78BYW+qBPxZsaPWCch6/LAs4BuM80L/cI4nwVDpwv5U5PJtU1ck/HBluBkFpF0DkxEyrWmDPP/o68Q777so/309fnbqiqT9psX9rJ9OHv3xCNH1RY5i/Ztc0A8sxsr9OulgY3UrAv6QViMAOm9q/xEoNDdKy6b978GxrKxoSQFgaCUvg3+s//z27vH916z9XVjItFj2YP8PNFLz7LYC/mdEFDejVrL93rSQb0/u9vz9kWNXyZ7m/vbXIKZzeyr/iibzmLJj3v2+7WzxZDwVAp+WYc4aP8D/SquMlYHPwPyPX3Mmk85E/kiooj4jtd78hM/xB+eatv82gVMvxI7q/tw+y0s2rs79sglMgRzLBvzjcjmhzffW/u7LMvjpG/D9X1CbXJFfPP7bGcoi/Lso/8Kq1A1Tqqz9J/R/+a3GHP7vITQz6rJW/lKSm//KMsz9SzsuScfm9v4xSznj5Vtw/MBLjNhs06b978GxrKxoSQD//FSzH3+s/b/XJqNog6z8Y0de8kVCgPw5rjcwoJYE/d2/3xdE8qL/U62iIA7XCP2sIXLaui7W/ke1vWjW+0D9VhiynI3b3v2+7WzxZDwVAuH6tEB2Q8D+exH3f00zwPxISNxJffJk/+qf+UfCAej9swAl92WWov1rRiB9SmcE/RTQLlKUdsL+ZyX6N6D/HPxKw3bMBZ/W/u7LMvjpG/D+j4szKnoraP6zCUVtqS9Q/YhnA0N64vz80XHAfmYChP8hyTGgpt6e/sccQ7fo1xj9HPBXp7Om9PwPDpyNWTdq/tUkAntgU5j9s/HXkRIH5P9j45f9vBtQ/oIeYJRVq1T8t7h8sYdbGPxVP/jaAfrQ/f2LAmDyCw7+mBtax7jXAP12t6jjtptU/KFRrbc8S079BBSL9qc7gP8Pes9hpLPM/w2oyJaxg2j9/Z3Tb/PfUPyDgYk9Cobw/1qBffQ7uoL81Il4ivcOov1RSWCN7LMW/NBCDxMiTvj/d3ll49KzYP7MnxkUfdeY/bPx15ESB+T9wOQ8ItNbTP6WmQDNHAdY/aw+LSp7ZxT8wOMJU6imzvyJPiibrAsS/5vS2kcqIvr8GCp0BiebVP2nSsE8YuNE/Lfpdb98R4T/D3rPYaSzzPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoQlRxIjES/kxaVEfLmg7/KuPjLlyJFv3ytxZ0T04E/TQ4Xu9sSa79FXP6OqXpzv0YVmokXIEW/9pSXcA5hb7+CgD+VZndrv4pPioG0VH0/jedl3ZKIa7+Kwi4EG/Bzv1Gj23CJmIE/bX92FTC1b7+4KVI1Cplsv+yZLfi4Wn0/uvfqW0VoYb+oIli/K9Zzv8RiX8WWlFA//s2fH7YlcL/9dEEKXq5qP3ylqKhylno/kVrV/44rX78IU39IR+92vx+voa87kVA/A4EEOrFsZb/d8OgsKOJqP4wCVGhQs3w/17FYcdomX7/gHYb99Rx3vx+voa87kVA/A4EEOrFsZb/d8OgsKOJqP4wCVGhQs3w/17FYcdomX7/gHYb99Rx3vzGnMbLQ3Io/w8BHKsU2cr9VE6Iz/AJ/v/EopoSxrHs/TUn/fx5XYr/7dzHBLqJ1vwff3Plc1oo/VMaKrC1KYz/ZZARBJol+v/O08458QIM/KUwpjBhGYr+WKHuEzW52vwff3Plc1oo/VMaKrC1KYz/ZZARBJol+v/O08458QIM/KUwpjBhGYr+WKHuEzW52v4qt3XOPE3G/2IlR+/1He79wSA2a7UV8vwiUR00r4YA/xwRqYFYgdb/6vbktFh52v/kNpo1hnnG/kPhBBWh5Pz+mziGwAU+Mv/Mgz1GoIYE/+Bhar799cL+OzbPvG1hxv4dOC9ok12c/GDMxrOQ8hr/W1fXCIvtaPxT4tU7jzIM/D+R8vh3MV78nSQUKcM11v3H6wtuxjWY/wa5nDRPlkL9c38xj/MFwvx7oz//OsIM/+u8lqZrSQL/WpSU53pN5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwJNeAGGlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInZs241zcoUCUhpRSlIwBbJRNjgGMAXSUR0DNtAb1AZ88dX2UKGgGaAloD0MIKc5RR0f5jECUhpRSlGgVS7JoFkdAzbT8UWVNYnV9lChoBmgJaA9DCFCJ6xiHXKNAlIaUUpRoFU2pAWgWR0DNta0cU/OddX2UKGgGaAloD0MIh78ma7ThnECUhpRSlGgVTVoBaBZHQM25cAD7qIJ1fZQoaAZoCWgPQwgrFr8p/KqqQJSGlFKUaBVNcwJoFkdAzbpYjxkNF3V9lChoBmgJaA9DCAVOtoGrjadAlIaUUpRoFU0BAmgWR0DNvGpR8+ibdX2UKGgGaAloD0MIfVwbKsYxhUCUhpRSlGgVS4toFkdAzb09xqfvnnV9lChoBmgJaA9DCKwdxTna4ZBAlIaUUpRoFUu4aBZHQM2+UTJIUah1fZQoaAZoCWgPQwhOYaWCTgyxQJSGlFKUaBVN/wJoFkdAzcB0f29L6HV9lChoBmgJaA9DCDCBW3fjlaVAlIaUUpRoFU3TAWgWR0DNwpgfCAMEdX2UKGgGaAloD0MIE2HD00NvqkCUhpRSlGgVTUQCaBZHQM3Dy3os7Mh1fZQoaAZoCWgPQwjLTdTSjHSQQJSGlFKUaBVLumgWR0DNxN6pNsWPdX2UKGgGaAloD0MIUfUrnbempkCUhpRSlGgVTQgCaBZHQM3FlKISDh91fZQoaAZoCWgPQwjNOuP74kOsQJSGlFKUaBVNeQJoFkdAzcolCIDYAnV9lChoBmgJaA9DCEn0MoqF75hAlIaUUpRoFU0cAWgWR0DNy78FwDNhdX2UKGgGaAloD0MI46Qw75HshkCUhpRSlGgVS5ZoFkdAzcyNo4dZJXV9lChoBmgJaA9DCKAZxAc+7LVAlIaUUpRoFU3oA2gWR0DNzOQCSzPbdX2UKGgGaAloD0MIbqMBvDXen0CUhpRSlGgVTWIBaBZHQM3QT8E3bVV1fZQoaAZoCWgPQwimK9hGjFafQJSGlFKUaBVNXQFoFkdAzdCpwkxASnV9lChoBmgJaA9DCGCuRQswkYhAlIaUUpRoFUugaBZHQM3ROqk/KQt1fZQoaAZoCWgPQwiamC7EiqOdQJSGlFKUaBVNVAFoFkdAzdMkYEW69XV9lChoBmgJaA9DCPZ/DvMt8qVAlIaUUpRoFU3zAWgWR0DN03ugctGvdX2UKGgGaAloD0MIvobguLwVpECUhpRSlGgVTdEBaBZHQM3XUYvnKW91fZQoaAZoCWgPQwiTjJyFSfi1QJSGlFKUaBVN6ANoFkdAzdoK/XXiBHV9lChoBmgJaA9DCPncCfY/7YFAlIaUUpRoFUt6aBZHQM3an8FQl8h1fZQoaAZoCWgPQwi0rWadUTm0QJSGlFKUaBVNgANoFkdAzdt6DTz/ZXV9lChoBmgJaA9DCLa8cr3taHZAlIaUUpRoFUtPaBZHQM3dKV89fTl1fZQoaAZoCWgPQwi9cVKYV6KbQJSGlFKUaBVNSwFoFkdAzd2GYgq3E3V9lChoBmgJaA9DCCHoaFULYZNAlIaUUpRoFUvYaBZHQM3eQX5N47l1fZQoaAZoCWgPQwgq/YSzl8WzQJSGlFKUaBVNYgNoFkdAzeGeEA5q/XV9lChoBmgJaA9DCP0VMleio7ZAlIaUUpRoFU3oA2gWR0DN5EnjOs1bdX2UKGgGaAloD0MIelG7X3X2n0CUhpRSlGgVTVgBaBZHQM3kl+7tiQV1fZQoaAZoCWgPQwjbUDHOL7WUQJSGlFKUaBVL42gWR0DN5YzgXMyKdX2UKGgGaAloD0MIuDoA4g7HmkCUhpRSlGgVTToBaBZHQM3lov863iJ1fZQoaAZoCWgPQwgEO/4LBM6aQJSGlFKUaBVNJwFoFkdAzebKD+R5knV9lChoBmgJaA9DCPMFLSRoDKZAlIaUUpRoFU32AWgWR0DN6okEzO5bdX2UKGgGaAloD0MI1qnyPbNbtkCUhpRSlGgVTegDaBZHQM3riSdWhh91fZQoaAZoCWgPQwiN7bWg7y2mQJSGlFKUaBVN9AFoFkdAze1Zvb48EHV9lChoBmgJaA9DCH1BCwmo1aNAlIaUUpRoFU22AWgWR0DN8Xa9du50dX2UKGgGaAloD0MIQwHbwXwRtECUhpRSlGgVTYYDaBZHQM3yQENWluZ1fZQoaAZoCWgPQwgaNV8lD0WfQJSGlFKUaBVNcAFoFkdAzfONXWe6I3V9lChoBmgJaA9DCLFQa5q33JtAlIaUUpRoFU1LAWgWR0DN9DHPmgandX2UKGgGaAloD0MIwf7r3OyztUCUhpRSlGgVTegDaBZHQM37Aj1f3N91fZQoaAZoCWgPQwizBu+rooW2QJSGlFKUaBVN6ANoFkdAzfuuAFPi1nV9lChoBmgJaA9DCFvptdkAaqBAlIaUUpRoFU2FAWgWR0DN/TUfozN2dX2UKGgGaAloD0MIWDuKc3Q2iUCUhpRSlGgVS6ZoFkdAzf/XMr3CbnV9lChoBmgJaA9DCDOl9bekEJ9AlIaUUpRoFU13AWgWR0DOEpmQ+2VndX2UKGgGaAloD0MIXTXPETkxhECUhpRSlGgVS4BoFkdAzhNSntv4unV9lChoBmgJaA9DCDC45o46CrZAlIaUUpRoFU3oA2gWR0DOE5gxWT5gdX2UKGgGaAloD0MIdQEvM3RTokCUhpRSlGgVTa4BaBZHQM4XzLI5o5B1fZQoaAZoCWgPQwhQ4J18ep6CQJSGlFKUaBVLa2gWR0DOGGo4dZJTdX2UKGgGaAloD0MIixpMwwTls0CUhpRSlGgVTbIDaBZHQM4aXctoSL91fZQoaAZoCWgPQwjn5EUm2AapQJSGlFKUaBVNZwJoFkdAzhvR9ph4MXV9lChoBmgJaA9DCKZjzjNGN5ZAlIaUUpRoFU0SAWgWR0DOG+cWVNYbdX2UKGgGaAloD0MIPL69a5C0lkCUhpRSlGgVTQIBaBZHQM4fAQb+98J1fZQoaAZoCWgPQwgFGJY/P/GSQJSGlFKUaBVL1WgWR0DOIDmIAOridX2UKGgGaAloD0MIXf3YJPeKrUCUhpRSlGgVTZYCaBZHQM4hVQkPczt1fZQoaAZoCWgPQwhx5eydgeumQJSGlFKUaBVN+QFoFkdAziRF3V09yXV9lChoBmgJaA9DCLpJDAIz/69AlIaUUpRoFU3/AmgWR0DOJlHsgMc7dX2UKGgGaAloD0MIMSdok8M2fkCUhpRSlGgVS2VoFkdAzibcivgWJ3V9lChoBmgJaA9DCJ6WH7iOYLJAlIaUUpRoFU1kA2gWR0DOKu+tjkMkdX2UKGgGaAloD0MIIOup1VeLk0CUhpRSlGgVS/BoFkdAzi3w8DjioHV9lChoBmgJaA9DCCbfbHM3t7VAlIaUUpRoFU3oA2gWR0DOLjXmJWNndX2UKGgGaAloD0MIpyTrcHyfsUCUhpRSlGgVTSIDaBZHQM4y4cw5/9Z1fZQoaAZoCWgPQwjwGYnQLHe0QJSGlFKUaBVNtwNoFkdAzjNm3I+4b3V9lChoBmgJaA9DCBb59UPsM5dAlIaUUpRoFUv6aBZHQM4173kPtlZ1fZQoaAZoCWgPQwgiNlg4SU2MQJSGlFKUaBVLlmgWR0DONfF/+bVjdX2UKGgGaAloD0MI1c4wtWW4kUCUhpRSlGgVS7toFkdAzjb+JIlMRHV9lChoBmgJaA9DCPlmmxsDQaBAlIaUUpRoFU16AWgWR0DOOTBkoWpIdX2UKGgGaAloD0MIeo8zTbhDr0CUhpRSlGgVTbgCaBZHQM457ANgBtF1fZQoaAZoCWgPQwhIG0esBb+QQJSGlFKUaBVLvGgWR0DOOvowdsBRdX2UKGgGaAloD0MI8n1xqRpppECUhpRSlGgVTb8BaBZHQM4/Pf6O5rh1fZQoaAZoCWgPQwiAgSBA9qu1QJSGlFKUaBVN1wNoFkdAzkBiw6hg3XV9lChoBmgJaA9DCEC9GTVP8J5AlIaUUpRoFU1WAWgWR0DOQmNLcsUZdX2UKGgGaAloD0MI+vIC7FsHqECUhpRSlGgVTTECaBZHQM5CY+FlCkZ1fZQoaAZoCWgPQwj/QLlt3wiQQJSGlFKUaBVLuGgWR0DORTk4WDYidX2UKGgGaAloD0MIDcfzGXC8pUCUhpRSlGgVTfIBaBZHQM5G+EF4cFR1fZQoaAZoCWgPQwjB5EaRlVClQJSGlFKUaBVN5AFoFkdAzkf7s/pt8HV9lChoBmgJaA9DCAYsuYrlxahAlIaUUpRoFU03AmgWR0DOTALi4rjHdX2UKGgGaAloD0MIusDlsYbks0CUhpRSlGgVTW4DaBZHQM5OyxEv0yx1fZQoaAZoCWgPQwgtJjYfF9KNQJSGlFKUaBVLwGgWR0DOT/gb83uNdX2UKGgGaAloD0MI4LvNG48UrUCUhpRSlGgVTaECaBZHQM5P+P/7zkJ1fZQoaAZoCWgPQwjmriXkMwSWQJSGlFKUaBVL92gWR0DOUWU2vStvdX2UKGgGaAloD0MI2ucxypv/oECUhpRSlGgVTZYBaBZHQM5VYgGbCrN1fZQoaAZoCWgPQwhFf2jm6d2xQJSGlFKUaBVNMgNoFkdAzlZf1uivgXV9lChoBmgJaA9DCK/S3XU+HqBAlIaUUpRoFU1iAWgWR0DOV3wH5aePdX2UKGgGaAloD0MIstmR6uP0oUCUhpRSlGgVTbYBaBZHQM5b0QHzH0d1fZQoaAZoCWgPQwiGcTeIJm+wQJSGlFKUaBVNAQNoFkdAzlydfb9IgHV9lChoBmgJaA9DCDAQBMiAjJNAlIaUUpRoFUvnaBZHQM5d5KdH2AZ1fZQoaAZoCWgPQwjB/uvc5GeRQJSGlFKUaBVLz2gWR0DOXwqMHbAUdX2UKGgGaAloD0MIgbT/AX6GrkCUhpRSlGgVTakCaBZHQM5flvQnhKl1fZQoaAZoCWgPQwi8W1mii7miQJSGlFKUaBVNnwFoFkdAzmOj5GBnSXV9lChoBmgJaA9DCBv2e2IZOrJAlIaUUpRoFU03A2gWR0DOZUHZIxxldX2UKGgGaAloD0MIkNyadFs7nECUhpRSlGgVTU4BaBZHQM5lZ1Da4+d1fZQoaAZoCWgPQwhM/id/pzabQJSGlFKUaBVNLAFoFkdAzmb+LjPv8nV9lChoBmgJaA9DCLE08KMKBZ9AlIaUUpRoFU1bAWgWR0DOZ2ftjTa1dX2UKGgGaAloD0MIiEm4kJdvk0CUhpRSlGgVS+BoFkdAzmpcnqmj03V9lChoBmgJaA9DCG04LA30iKtAlIaUUpRoFU2DAmgWR0DObD2GEf1ZdX2UKGgGaAloD0MI2h694WYMpECUhpRSlGgVTdIBaBZHQM6AaeYtxuN1fZQoaAZoCWgPQwhrJ0pCcluzQJSGlFKUaBVNcQNoFkdAzoDHIfbKzXVlLg=="
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 977,
|
88 |
+
"n_steps": 1024,
|
89 |
+
"gamma": 0.99,
|
90 |
+
"gae_lambda": 0.95,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.0,
|
93 |
+
"max_grad_norm": 0.0,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"batch_size": 128,
|
96 |
+
"cg_max_steps": 25,
|
97 |
+
"cg_damping": 0.1,
|
98 |
+
"line_search_shrinking_factor": 0.8,
|
99 |
+
"line_search_max_iter": 10,
|
100 |
+
"target_kl": 0.01,
|
101 |
+
"n_critic_updates": 20,
|
102 |
+
"sub_sampling_factor": 1
|
103 |
+
}
|
trpo-Humanoid-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7c3648720abc35974fd32f54731c08972bfd0ef1f0abc25ed98824992a4d93f
|
3 |
+
size 231855
|
trpo-Humanoid-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da29db15041cee2ae2d88ee2b85275a4dcf8f5fa9664b357aa475f1a027962b0
|
3 |
+
size 235518
|
trpo-Humanoid-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Humanoid-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:114289e5d980b1d19f993808f43e686491f6b84d2ba9374ddfe7868531e3cf71
|
3 |
+
size 22958
|