qnguyen3 commited on
Commit
2d14fd4
1 Parent(s): 1a7f6f3

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/azureuser/nanoLLaVA/checkpoint-5426",
3
+ "architectures": [
4
+ "BunnyQwenForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151645,
8
+ "eos_token_id": 151645,
9
+ "freeze_mm_mlp_adapter": false,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 1024,
12
+ "image_aspect_ratio": "pad",
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 2816,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 21,
17
+ "mm_hidden_size": 1152,
18
+ "mm_projector_lr": null,
19
+ "mm_projector_type": "mlp2x_gelu",
20
+ "mm_vision_tower": "google/siglip-so400m-patch14-384",
21
+ "model_type": "bunny-qwen",
22
+ "num_attention_heads": 16,
23
+ "num_hidden_layers": 24,
24
+ "num_key_value_heads": 16,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_theta": 1000000.0,
27
+ "sliding_window": 4096,
28
+ "tie_word_embeddings": false,
29
+ "tokenizer_model_max_length": 4096,
30
+ "tokenizer_padding_side": "right",
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.39.2",
33
+ "tune_mm_mlp_adapter": false,
34
+ "use_cache": false,
35
+ "use_mm_proj": true,
36
+ "use_sliding_window": false,
37
+ "vocab_size": 151936
38
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151645,
3
+ "do_sample": true,
4
+ "eos_token_id": 151645,
5
+ "max_length": 4096,
6
+ "temperature": 0.7,
7
+ "top_p": 0.8,
8
+ "transformers_version": "4.39.2"
9
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step100
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6319126507046d2e020963da2e09e5943432eabb7ede807dab4e71bb858f5407
3
+ size 2100155752
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbe0d720c4c75a6a04213fa3b64bacbe794718a53e2b56ebb67a1a795014dfad
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72452d3138d0ca2ff89429e3294a834ae7a68e8596fc757735ca56ae52509d57
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f36e306fb8ebcf53a167bfd6c9af74db410a269ada1e619e3e816f5269543b9d
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb47ce0c6f815a6f8302b0e3819b4c2315ca71dae3138d97fdceb765cdd0a039
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55aee30756eafb6867aac7a1030ef864e1bebc1c415125c9942410da063354fe
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<|endoftext|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": "<|im_end|>",
34
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 4096,
39
+ "pad_token": "<|endoftext|>",
40
+ "padding_side": "right",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
trainer_state.json ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.03685447090800203,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 28.375805268212044,
14
+ "learning_rate": 2.439024390243903e-07,
15
+ "loss": 1.9916,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "grad_norm": 35.06631979328207,
21
+ "learning_rate": 4.878048780487805e-07,
22
+ "loss": 2.0906,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "grad_norm": 38.398944345049074,
28
+ "learning_rate": 7.317073170731707e-07,
29
+ "loss": 2.1697,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0,
34
+ "grad_norm": 31.786491229547707,
35
+ "learning_rate": 9.75609756097561e-07,
36
+ "loss": 1.885,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.0,
41
+ "grad_norm": 36.04697641354884,
42
+ "learning_rate": 1.2195121951219514e-06,
43
+ "loss": 2.055,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0,
48
+ "grad_norm": 34.00945696139665,
49
+ "learning_rate": 1.4634146341463414e-06,
50
+ "loss": 1.9784,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "grad_norm": 26.542180094892565,
56
+ "learning_rate": 1.707317073170732e-06,
57
+ "loss": 1.9204,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0,
62
+ "grad_norm": 31.922434847983876,
63
+ "learning_rate": 1.951219512195122e-06,
64
+ "loss": 1.9556,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0,
69
+ "grad_norm": 29.799359182326604,
70
+ "learning_rate": 2.1951219512195125e-06,
71
+ "loss": 2.0238,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.0,
76
+ "grad_norm": 24.788943060794754,
77
+ "learning_rate": 2.4390243902439027e-06,
78
+ "loss": 2.0543,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.0,
83
+ "grad_norm": 23.62857327313063,
84
+ "learning_rate": 2.682926829268293e-06,
85
+ "loss": 1.974,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0,
90
+ "grad_norm": 25.440796117241586,
91
+ "learning_rate": 2.926829268292683e-06,
92
+ "loss": 1.9558,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0,
97
+ "grad_norm": 11.507873994835268,
98
+ "learning_rate": 3.1707317073170736e-06,
99
+ "loss": 1.554,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.01,
104
+ "grad_norm": 10.11918265638141,
105
+ "learning_rate": 3.414634146341464e-06,
106
+ "loss": 1.5119,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.01,
111
+ "grad_norm": 12.356401968625594,
112
+ "learning_rate": 3.6585365853658537e-06,
113
+ "loss": 1.6321,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.01,
118
+ "grad_norm": 11.132578216935597,
119
+ "learning_rate": 3.902439024390244e-06,
120
+ "loss": 1.5888,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.01,
125
+ "grad_norm": 12.240345185091753,
126
+ "learning_rate": 4.146341463414634e-06,
127
+ "loss": 1.5076,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.01,
132
+ "grad_norm": 11.968138590460152,
133
+ "learning_rate": 4.390243902439025e-06,
134
+ "loss": 1.3815,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.01,
139
+ "grad_norm": 8.169350991545556,
140
+ "learning_rate": 4.634146341463416e-06,
141
+ "loss": 1.3101,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.01,
146
+ "grad_norm": 9.505811804013986,
147
+ "learning_rate": 4.8780487804878055e-06,
148
+ "loss": 1.2818,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.01,
153
+ "grad_norm": 5.796640993993368,
154
+ "learning_rate": 5.121951219512195e-06,
155
+ "loss": 1.2677,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.01,
160
+ "grad_norm": 4.764801673099041,
161
+ "learning_rate": 5.365853658536586e-06,
162
+ "loss": 1.2417,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.01,
167
+ "grad_norm": 3.8410501167446562,
168
+ "learning_rate": 5.609756097560977e-06,
169
+ "loss": 1.2282,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.01,
174
+ "grad_norm": 3.2269719491020132,
175
+ "learning_rate": 5.853658536585366e-06,
176
+ "loss": 1.1735,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.01,
181
+ "grad_norm": 2.7362981827784276,
182
+ "learning_rate": 6.0975609756097564e-06,
183
+ "loss": 1.1771,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.01,
188
+ "grad_norm": 2.3380480940076693,
189
+ "learning_rate": 6.341463414634147e-06,
190
+ "loss": 1.1862,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.01,
195
+ "grad_norm": 2.3527882605489214,
196
+ "learning_rate": 6.585365853658538e-06,
197
+ "loss": 1.0824,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.01,
202
+ "grad_norm": 2.120763742750798,
203
+ "learning_rate": 6.829268292682928e-06,
204
+ "loss": 1.0907,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.01,
209
+ "grad_norm": 1.7082373070011942,
210
+ "learning_rate": 7.0731707317073175e-06,
211
+ "loss": 1.0936,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.01,
216
+ "grad_norm": 1.771684587866832,
217
+ "learning_rate": 7.317073170731707e-06,
218
+ "loss": 1.232,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.01,
223
+ "grad_norm": 1.6792419401200112,
224
+ "learning_rate": 7.560975609756098e-06,
225
+ "loss": 1.0939,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.01,
230
+ "grad_norm": 1.5870734246620417,
231
+ "learning_rate": 7.804878048780489e-06,
232
+ "loss": 1.0344,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.01,
237
+ "grad_norm": 1.5321693507507685,
238
+ "learning_rate": 8.048780487804879e-06,
239
+ "loss": 1.1247,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.01,
244
+ "grad_norm": 1.5384110247679068,
245
+ "learning_rate": 8.292682926829268e-06,
246
+ "loss": 1.0561,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.01,
251
+ "grad_norm": 1.6803740230388178,
252
+ "learning_rate": 8.536585365853658e-06,
253
+ "loss": 1.0912,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.01,
258
+ "grad_norm": 1.7687493200257336,
259
+ "learning_rate": 8.78048780487805e-06,
260
+ "loss": 1.0656,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "grad_norm": 1.696255950031143,
266
+ "learning_rate": 9.02439024390244e-06,
267
+ "loss": 1.0381,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.01,
272
+ "grad_norm": 1.5093882845959572,
273
+ "learning_rate": 9.268292682926831e-06,
274
+ "loss": 1.1241,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.01,
279
+ "grad_norm": 1.6975518192922392,
280
+ "learning_rate": 9.51219512195122e-06,
281
+ "loss": 0.9997,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.01,
286
+ "grad_norm": 1.5343961293035455,
287
+ "learning_rate": 9.756097560975611e-06,
288
+ "loss": 1.0369,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.02,
293
+ "grad_norm": 1.4138966954537764,
294
+ "learning_rate": 1e-05,
295
+ "loss": 1.014,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.02,
300
+ "grad_norm": 1.176007866432356,
301
+ "learning_rate": 1.024390243902439e-05,
302
+ "loss": 1.0021,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.02,
307
+ "grad_norm": 1.2381411186803413,
308
+ "learning_rate": 1.0487804878048782e-05,
309
+ "loss": 1.1223,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.02,
314
+ "grad_norm": 1.320371206343042,
315
+ "learning_rate": 1.0731707317073172e-05,
316
+ "loss": 1.1278,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.02,
321
+ "grad_norm": 1.169780930584551,
322
+ "learning_rate": 1.0975609756097562e-05,
323
+ "loss": 0.9749,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.02,
328
+ "grad_norm": 1.2215812178026708,
329
+ "learning_rate": 1.1219512195121953e-05,
330
+ "loss": 1.1331,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.02,
335
+ "grad_norm": 1.2706297862727212,
336
+ "learning_rate": 1.1463414634146342e-05,
337
+ "loss": 1.0683,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.02,
342
+ "grad_norm": 1.1432329777320256,
343
+ "learning_rate": 1.1707317073170731e-05,
344
+ "loss": 1.1807,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.02,
349
+ "grad_norm": 1.2331341664649251,
350
+ "learning_rate": 1.1951219512195123e-05,
351
+ "loss": 1.1285,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.02,
356
+ "grad_norm": 1.1741530257255526,
357
+ "learning_rate": 1.2195121951219513e-05,
358
+ "loss": 1.0448,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.02,
363
+ "grad_norm": 1.1161714391272533,
364
+ "learning_rate": 1.2439024390243903e-05,
365
+ "loss": 1.0628,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.02,
370
+ "grad_norm": 1.1971235536055034,
371
+ "learning_rate": 1.2682926829268294e-05,
372
+ "loss": 1.0049,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.02,
377
+ "grad_norm": 1.045851128188208,
378
+ "learning_rate": 1.2926829268292684e-05,
379
+ "loss": 1.1882,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.02,
384
+ "grad_norm": 1.0698067786575107,
385
+ "learning_rate": 1.3170731707317076e-05,
386
+ "loss": 0.9463,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.02,
391
+ "grad_norm": 1.172591425775864,
392
+ "learning_rate": 1.3414634146341466e-05,
393
+ "loss": 1.0636,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.02,
398
+ "grad_norm": 1.1106016799757537,
399
+ "learning_rate": 1.3658536585365855e-05,
400
+ "loss": 0.9946,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.02,
405
+ "grad_norm": 1.086675627063963,
406
+ "learning_rate": 1.3902439024390244e-05,
407
+ "loss": 1.1333,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.02,
412
+ "grad_norm": 1.1240451271188707,
413
+ "learning_rate": 1.4146341463414635e-05,
414
+ "loss": 1.0376,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.02,
419
+ "grad_norm": 1.0978604882977046,
420
+ "learning_rate": 1.4390243902439025e-05,
421
+ "loss": 1.0286,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.02,
426
+ "grad_norm": 1.1371703935435598,
427
+ "learning_rate": 1.4634146341463415e-05,
428
+ "loss": 1.0489,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.02,
433
+ "grad_norm": 1.081855866398565,
434
+ "learning_rate": 1.4878048780487806e-05,
435
+ "loss": 1.0347,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.02,
440
+ "grad_norm": 1.1018052800440352,
441
+ "learning_rate": 1.5121951219512196e-05,
442
+ "loss": 1.0503,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.02,
447
+ "grad_norm": 1.2132015921868264,
448
+ "learning_rate": 1.5365853658536586e-05,
449
+ "loss": 0.962,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.02,
454
+ "grad_norm": 1.1035822755607994,
455
+ "learning_rate": 1.5609756097560978e-05,
456
+ "loss": 1.0749,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.02,
461
+ "grad_norm": 1.0944024225848128,
462
+ "learning_rate": 1.585365853658537e-05,
463
+ "loss": 1.0126,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.02,
468
+ "grad_norm": 1.1408025250647078,
469
+ "learning_rate": 1.6097560975609757e-05,
470
+ "loss": 0.9841,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.02,
475
+ "grad_norm": 1.0549980708871876,
476
+ "learning_rate": 1.6341463414634145e-05,
477
+ "loss": 1.0857,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.03,
482
+ "grad_norm": 1.1088465780550794,
483
+ "learning_rate": 1.6585365853658537e-05,
484
+ "loss": 1.0189,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.03,
489
+ "grad_norm": 1.1030941169394408,
490
+ "learning_rate": 1.682926829268293e-05,
491
+ "loss": 0.9477,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.03,
496
+ "grad_norm": 1.0906659313859568,
497
+ "learning_rate": 1.7073170731707317e-05,
498
+ "loss": 1.1326,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.03,
503
+ "grad_norm": 1.095023300471396,
504
+ "learning_rate": 1.7317073170731708e-05,
505
+ "loss": 1.0073,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.03,
510
+ "grad_norm": 1.0603304396820843,
511
+ "learning_rate": 1.75609756097561e-05,
512
+ "loss": 1.0442,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.03,
517
+ "grad_norm": 1.0658804001104982,
518
+ "learning_rate": 1.7804878048780488e-05,
519
+ "loss": 1.0266,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.03,
524
+ "grad_norm": 1.0581434225632516,
525
+ "learning_rate": 1.804878048780488e-05,
526
+ "loss": 0.9944,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.03,
531
+ "grad_norm": 1.0325391690636108,
532
+ "learning_rate": 1.829268292682927e-05,
533
+ "loss": 0.9795,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.03,
538
+ "grad_norm": 1.0137734048869766,
539
+ "learning_rate": 1.8536585365853663e-05,
540
+ "loss": 0.9792,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.03,
545
+ "grad_norm": 1.0835263870224308,
546
+ "learning_rate": 1.878048780487805e-05,
547
+ "loss": 1.0396,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.03,
552
+ "grad_norm": 0.9724143527075428,
553
+ "learning_rate": 1.902439024390244e-05,
554
+ "loss": 0.9221,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.03,
559
+ "grad_norm": 0.9990983369485978,
560
+ "learning_rate": 1.926829268292683e-05,
561
+ "loss": 0.9228,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.03,
566
+ "grad_norm": 1.1063583109588462,
567
+ "learning_rate": 1.9512195121951222e-05,
568
+ "loss": 1.0854,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.03,
573
+ "grad_norm": 1.0512858412634352,
574
+ "learning_rate": 1.975609756097561e-05,
575
+ "loss": 1.0148,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.03,
580
+ "grad_norm": 1.0536440636090694,
581
+ "learning_rate": 2e-05,
582
+ "loss": 1.0287,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.03,
587
+ "grad_norm": 1.0803096330003004,
588
+ "learning_rate": 1.999999287101006e-05,
589
+ "loss": 1.1047,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.03,
594
+ "grad_norm": 1.0547983394060736,
595
+ "learning_rate": 1.99999714840504e-05,
596
+ "loss": 0.9816,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.03,
601
+ "grad_norm": 0.9807015967414549,
602
+ "learning_rate": 1.9999935839151513e-05,
603
+ "loss": 0.9548,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.03,
608
+ "grad_norm": 1.0711912458397403,
609
+ "learning_rate": 1.999988593636423e-05,
610
+ "loss": 0.9682,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.03,
615
+ "grad_norm": 0.9722241890066263,
616
+ "learning_rate": 1.999982177575969e-05,
617
+ "loss": 1.0405,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.03,
622
+ "grad_norm": 1.028798727103559,
623
+ "learning_rate": 1.999974335742938e-05,
624
+ "loss": 1.1811,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.03,
629
+ "grad_norm": 1.1021829611351164,
630
+ "learning_rate": 1.999965068148511e-05,
631
+ "loss": 0.9051,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.03,
636
+ "grad_norm": 1.0334726008966082,
637
+ "learning_rate": 1.9999543748059012e-05,
638
+ "loss": 1.0484,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.03,
643
+ "grad_norm": 1.066221360284238,
644
+ "learning_rate": 1.9999422557303553e-05,
645
+ "loss": 1.0307,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.03,
650
+ "grad_norm": 1.054488043267414,
651
+ "learning_rate": 1.999928710939153e-05,
652
+ "loss": 1.1487,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.03,
657
+ "grad_norm": 1.1079480240688568,
658
+ "learning_rate": 1.9999137404516062e-05,
659
+ "loss": 0.9761,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.03,
664
+ "grad_norm": 1.070030561141793,
665
+ "learning_rate": 1.99989734428906e-05,
666
+ "loss": 1.0988,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.04,
671
+ "grad_norm": 1.0564078940337887,
672
+ "learning_rate": 1.9998795224748916e-05,
673
+ "loss": 1.0195,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.04,
678
+ "grad_norm": 1.1531641916007334,
679
+ "learning_rate": 1.9998602750345113e-05,
680
+ "loss": 1.0807,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.04,
685
+ "grad_norm": 1.116837722786228,
686
+ "learning_rate": 1.9998396019953627e-05,
687
+ "loss": 0.9621,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.04,
692
+ "grad_norm": 1.0677298051233879,
693
+ "learning_rate": 1.9998175033869205e-05,
694
+ "loss": 0.9151,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.04,
699
+ "grad_norm": 1.1242469864164173,
700
+ "learning_rate": 1.9997939792406936e-05,
701
+ "loss": 0.9819,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.04,
706
+ "grad_norm": 1.16872009332317,
707
+ "learning_rate": 1.9997690295902225e-05,
708
+ "loss": 1.1617,
709
+ "step": 100
710
+ }
711
+ ],
712
+ "logging_steps": 1.0,
713
+ "max_steps": 2713,
714
+ "num_input_tokens_seen": 0,
715
+ "num_train_epochs": 1,
716
+ "save_steps": 100,
717
+ "total_flos": 134491228471296.0,
718
+ "train_batch_size": 8,
719
+ "trial_name": null,
720
+ "trial_params": null
721
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:738f0ea8e09d651424e0acfd276ca112425fe1fa15d2370f5ef6bafeda192889
3
+ size 6968
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)