File size: 1,764 Bytes
b2ecdb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: xsum-gpt2-long-pegasus
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xsum-gpt2-long-pegasus

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2524
- Ppl: 26.6834

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 22554
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2000
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Ppl     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 3.7921        | 2.67  | 4000  | 3.6382          | 39.1940 |
| 3.4486        | 5.34  | 8000  | 3.4164          | 31.3953 |
| 3.299         | 8.01  | 12000 | 3.3291          | 28.7823 |
| 3.2019        | 10.68 | 16000 | 3.2769          | 27.3369 |
| 3.1403        | 13.36 | 20000 | 3.2524          | 26.6834 |


### Framework versions

- Transformers 4.35.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.14.6
- Tokenizers 0.14.1