Image-Text-to-Text
Transformers
PyTorch
English
doubutsu_next
conversational
custom_code
Inference Endpoints
File size: 3,031 Bytes
e289ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
datasets:
- liuhaotian/LLaVA-CC3M-Pretrain-595K
pipeline_tag: image-text-to-text
language:
- en
---

> [!IMPORTANT]
> NOTE: This model is not meant to be used alone, you need to either finetune it with this [notebook](https://github.com/qrsch/doubutsu/blob/main/notebooks/finetuning_next.ipynb) or use an existing adapter.

# doubutsu-2b-pt-756

`doubutsu` is a family of smol VLMs meant to be finetuned for your own use-case.

Built by [@qtnx_](https://x.com/qtnx_) and [@yeswondwerr](https://x.com/yeswondwerr)

## Usage

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model_id = "qresearch/doubutsu-2b-pt-756"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16,
).to("cuda")

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    use_fast=True,
)

model.load_adapter("qresearch/doubutsu-2b-lora-756-docci")

image = Image.open("IMAGE")

print(
    model.answer_question(
        image, "Describe the image", tokenizer, max_new_tokens=128, temperature=0.1
    ),
)
```

> [!TIP]
> these models require smaller temperatures. We recommend to use a temperature of 0.1-0.3.

## Evals

TBD

## Acknowledgements 

- Liu et al. : [LLaVA](https://arxiv.org/abs/2304.08485)
- Moon et al. : [AnyMAL](https://arxiv.org/abs/2309.16058)
- vikhyatk : moondream codebase
  
```
                                       .x+=:.                                                             
                                      z`    ^%                                                  .uef^"    
               .u    .                   .   <k                           .u    .             :d88E       
    .u@u     .d88B :@8c       .u       .@8Ned8"      .u          u      .d88B :@8c        .   `888E       
 .zWF8888bx ="8888f8888r   ud8888.   .@^%8888"    ud8888.     us888u.  ="8888f8888r  .udR88N   888E .z8k  
.888  9888    4888>'88"  :888'8888. x88:  `)8b. :888'8888. .@88 "8888"   4888>'88"  <888'888k  888E~?888L 
I888  9888    4888> '    d888 '88%" 8888N=*8888 d888 '88%" 9888  9888    4888> '    9888 'Y"   888E  888E 
I888  9888    4888>      8888.+"     %8"    R88 8888.+"    9888  9888    4888>      9888       888E  888E 
I888  9888   .d888L .+   8888L        @8Wou 9%  8888L      9888  9888   .d888L .+   9888       888E  888E 
`888Nx?888   ^"8888*"    '8888c. .+ .888888P`   '8888c. .+ 9888  9888   ^"8888*"    ?8888u../  888E  888E 
 "88" '888      "Y"       "88888%   `   ^"F      "88888%   "888*""888"     "Y"       "8888P'  m888N= 888> 
       88E                  "YP'                   "YP'     ^Y"   ^Y'                  "P'     `Y"   888  
       98>                                                                                          J88"  
       '8                                                                                           @%    
        `                                                                                         :"      
```