init
Browse files- README.md +43 -0
- __main__.py +204 -0
- assets/demo-1.jpg +0 -0
- assets/demo-2.jpg +0 -0
- assets/demo-3.jpg +0 -0
- mm_projector.bin +3 -0
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
---
|
5 |
+
|
6 |
+
# llama3-vision-alpha
|
7 |
+
|
8 |
+
projection module trained to add vision capabilties to Llama 3 using SigLIP. built by [@yeswondwerr](https://x.com/yeswondwerr) and [@qtnx_](https://x.com/qtnx_)
|
9 |
+
|
10 |
+
**usage**
|
11 |
+
|
12 |
+
```
|
13 |
+
pip install torch transformers bitsandbytes accelerate
|
14 |
+
```
|
15 |
+
|
16 |
+
```
|
17 |
+
python __main__.py -i image
|
18 |
+
```
|
19 |
+
|
20 |
+
**examples**
|
21 |
+
|
22 |
+
| Image | Examples |
|
23 |
+
| --- | --- |
|
24 |
+
| ![](assets/demo-1.jpg) | **What is the title of this book? answer briefly**<br>The title of the book is "The Little Book of Deep Learning".<br><br>**Where is the person standing? answer briefly**<br> The person is standing on the balcony. |
|
25 |
+
| ![](assets/demo-2.jpg) | **What type of food is the girl holding? answer briefly**<br>A hamburger!<br><br>**What color is the woman's hair? answer briefly**<br>It's white! |
|
26 |
+
|
27 |
+
```
|
28 |
+
.x+=:.
|
29 |
+
z` ^% .uef^"
|
30 |
+
.u . . <k .u . :d88E
|
31 |
+
.u@u .d88B :@8c .u .@8Ned8" .u u .d88B :@8c . `888E
|
32 |
+
.zWF8888bx ="8888f8888r ud8888. .@^%8888" ud8888. us888u. ="8888f8888r .udR88N 888E .z8k
|
33 |
+
.888 9888 4888>'88" :888'8888. x88: `)8b. :888'8888. .@88 "8888" 4888>'88" <888'888k 888E~?888L
|
34 |
+
I888 9888 4888> ' d888 '88%" 8888N=*8888 d888 '88%" 9888 9888 4888> ' 9888 'Y" 888E 888E
|
35 |
+
I888 9888 4888> 8888.+" %8" R88 8888.+" 9888 9888 4888> 9888 888E 888E
|
36 |
+
I888 9888 .d888L .+ 8888L @8Wou 9% 8888L 9888 9888 .d888L .+ 9888 888E 888E
|
37 |
+
`888Nx?888 ^"8888*" '8888c. .+ .888888P` '8888c. .+ 9888 9888 ^"8888*" ?8888u../ 888E 888E
|
38 |
+
"88" '888 "Y" "88888% ` ^"F "88888% "888*""888" "Y" "8888P' m888N= 888>
|
39 |
+
88E "YP' "YP' ^Y" ^Y' "P' `Y" 888
|
40 |
+
98> J88"
|
41 |
+
'8 @%
|
42 |
+
` :"
|
43 |
+
```
|
__main__.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import (
|
7 |
+
AutoModel,
|
8 |
+
AutoProcessor,
|
9 |
+
AutoTokenizer,
|
10 |
+
BitsAndBytesConfig,
|
11 |
+
LlamaForCausalLM, SiglipImageProcessor, SiglipVisionModel
|
12 |
+
|
13 |
+
)
|
14 |
+
from transformers import TextStreamer
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None):
|
19 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
20 |
+
|
21 |
+
def insert_separator(X, sep):
|
22 |
+
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
23 |
+
|
24 |
+
input_ids = []
|
25 |
+
offset = 0
|
26 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
27 |
+
offset = 1
|
28 |
+
input_ids.append(prompt_chunks[0][0])
|
29 |
+
|
30 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
31 |
+
input_ids.extend(x[offset:])
|
32 |
+
|
33 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
34 |
+
|
35 |
+
|
36 |
+
def process_tensors(input_ids, image_features, embedding_layer):
|
37 |
+
# Find the index of -200 in input_ids
|
38 |
+
split_index = (input_ids == -200).nonzero(as_tuple=True)[1][0]
|
39 |
+
|
40 |
+
# Split the input_ids at the index found, excluding -200
|
41 |
+
input_ids_1 = input_ids[:, :split_index]
|
42 |
+
input_ids_2 = input_ids[:, split_index + 1:]
|
43 |
+
|
44 |
+
# Convert input_ids to embeddings
|
45 |
+
embeddings_1 = embedding_layer(input_ids_1)
|
46 |
+
embeddings_2 = embedding_layer(input_ids_2)
|
47 |
+
|
48 |
+
device = image_features.device
|
49 |
+
token_embeddings_part1 = embeddings_1.to(device)
|
50 |
+
token_embeddings_part2 = embeddings_2.to(device)
|
51 |
+
|
52 |
+
# Concatenate the token embeddings and image features
|
53 |
+
concatenated_embeddings = torch.cat(
|
54 |
+
[token_embeddings_part1, image_features, token_embeddings_part2], dim=1
|
55 |
+
)
|
56 |
+
|
57 |
+
# Create the corrected attention mask
|
58 |
+
attention_mask = torch.ones(concatenated_embeddings.shape[:2], dtype=torch.long, device=device)
|
59 |
+
return concatenated_embeddings, attention_mask
|
60 |
+
|
61 |
+
|
62 |
+
def initialize_models():
|
63 |
+
bnb_config = BitsAndBytesConfig(
|
64 |
+
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
|
65 |
+
)
|
66 |
+
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-3-8b-Instruct", use_fast=True)
|
68 |
+
model = LlamaForCausalLM.from_pretrained(
|
69 |
+
"unsloth/llama-3-8b-Instruct",
|
70 |
+
torch_dtype=torch.float16,
|
71 |
+
device_map="auto",
|
72 |
+
quantization_config=bnb_config,
|
73 |
+
)
|
74 |
+
|
75 |
+
for param in model.base_model.parameters():
|
76 |
+
param.requires_grad = False
|
77 |
+
|
78 |
+
model_name = "google/siglip-so400m-patch14-384"
|
79 |
+
vision_model = SiglipVisionModel.from_pretrained(model_name, torch_dtype=torch.float16)
|
80 |
+
processor = SiglipImageProcessor.from_pretrained(model_name)
|
81 |
+
|
82 |
+
vision_model = vision_model.to("cuda")
|
83 |
+
|
84 |
+
return tokenizer, model, vision_model, processor
|
85 |
+
|
86 |
+
|
87 |
+
class ProjectionModule(nn.Module):
|
88 |
+
def __init__(self, mm_hidden_size, hidden_size):
|
89 |
+
super(ProjectionModule, self).__init__()
|
90 |
+
|
91 |
+
# Directly set up the sequential model
|
92 |
+
self.model = nn.Sequential(
|
93 |
+
nn.Linear(mm_hidden_size, hidden_size),
|
94 |
+
nn.GELU(),
|
95 |
+
nn.Linear(hidden_size, hidden_size)
|
96 |
+
)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
return self.model(x)
|
100 |
+
|
101 |
+
def load_projection_module(mm_hidden_size=1152, hidden_size=4096, device='cuda'):
|
102 |
+
projection_module = ProjectionModule(mm_hidden_size, hidden_size)
|
103 |
+
checkpoint = torch.load("./checkpoints/llama-3/checkpoint-2400/mm_projector.bin")
|
104 |
+
checkpoint = {k.replace("mm_projector.", ""): v for k, v in checkpoint.items()}
|
105 |
+
projection_module.load_state_dict(checkpoint)
|
106 |
+
projection_module = projection_module.to(device).half()
|
107 |
+
return projection_module
|
108 |
+
|
109 |
+
|
110 |
+
def answer_question(
|
111 |
+
image_path, tokenizer, model, vision_model, processor, projection_module
|
112 |
+
):
|
113 |
+
image = Image.open(image_path).convert('RGB')
|
114 |
+
|
115 |
+
tokenizer.bos_token_id = None
|
116 |
+
tokenizer.eos_token = "<|eot_id|>"
|
117 |
+
|
118 |
+
try:
|
119 |
+
inp = input('user: ')
|
120 |
+
except EOFError:
|
121 |
+
inp = ""
|
122 |
+
if not inp:
|
123 |
+
print("exit...")
|
124 |
+
|
125 |
+
question = '<image>' + inp
|
126 |
+
|
127 |
+
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
128 |
+
|
129 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, -200, return_tensors='pt').unsqueeze(0).to(
|
130 |
+
model.device)
|
131 |
+
|
132 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
133 |
+
|
134 |
+
with torch.inference_mode():
|
135 |
+
image_inputs = processor(images=[image], return_tensors="pt", do_resize=True,
|
136 |
+
size={"height": 384, "width": 384}).to("cuda")
|
137 |
+
|
138 |
+
image_inputs = image_inputs['pixel_values'].squeeze(0)
|
139 |
+
|
140 |
+
image_forward_outs = vision_model(image_inputs.to(device='cuda', dtype=torch.float16).unsqueeze(0),
|
141 |
+
output_hidden_states=True)
|
142 |
+
|
143 |
+
image_features = image_forward_outs.hidden_states[-2]
|
144 |
+
|
145 |
+
image_features2 = image_features[:, 1:]
|
146 |
+
|
147 |
+
projected_embeddings = projection_module(image_features2).to("cuda")
|
148 |
+
|
149 |
+
embedding_layer = model.get_input_embeddings()
|
150 |
+
#text_embeddings = embedding_layer(input_ids)
|
151 |
+
|
152 |
+
new_embeds, attn_mask = process_tensors(input_ids, projected_embeddings, embedding_layer)
|
153 |
+
device = model.device
|
154 |
+
attn_mask = attn_mask.to(device)
|
155 |
+
new_embeds = new_embeds.to(device)
|
156 |
+
|
157 |
+
model_kwargs = {
|
158 |
+
'do_sample': True,
|
159 |
+
'temperature': 0.2,
|
160 |
+
'max_new_tokens': 2000,
|
161 |
+
'use_cache': True,
|
162 |
+
'streamer': streamer
|
163 |
+
}
|
164 |
+
|
165 |
+
while True:
|
166 |
+
generated_ids = model.generate(
|
167 |
+
inputs_embeds=new_embeds,
|
168 |
+
attention_mask=attn_mask,
|
169 |
+
**model_kwargs
|
170 |
+
|
171 |
+
)[0]
|
172 |
+
|
173 |
+
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=False)
|
174 |
+
try:
|
175 |
+
inp = input('user: ')
|
176 |
+
except EOFError:
|
177 |
+
inp = ""
|
178 |
+
if not inp:
|
179 |
+
print("exit...")
|
180 |
+
|
181 |
+
new_text = generated_text + "<|start_header_id|>user<|end_header_id|>\n\n" + inp + "<|start_header_id|>assistant<|end_header_id|>\n\n"
|
182 |
+
new_input_ids = tokenizer(new_text, return_tensors='pt').input_ids.to(device)
|
183 |
+
new_embeddings = embedding_layer(new_input_ids)
|
184 |
+
|
185 |
+
new_embeds = torch.cat([new_embeds, new_embeddings], dim=1)
|
186 |
+
attn_mask = torch.ones(new_embeds.shape[:2], device=device)
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
parser = argparse.ArgumentParser(description="Answer questions based on an image")
|
191 |
+
parser.add_argument("-i", "--image", required=True, help="Path to the image file")
|
192 |
+
args = parser.parse_args()
|
193 |
+
|
194 |
+
tokenizer, model, vision_model, processor = initialize_models()
|
195 |
+
projection_module = load_projection_module()
|
196 |
+
|
197 |
+
answer_question(
|
198 |
+
args.image,
|
199 |
+
tokenizer,
|
200 |
+
model,
|
201 |
+
vision_model,
|
202 |
+
processor,
|
203 |
+
projection_module,
|
204 |
+
)
|
assets/demo-1.jpg
ADDED
assets/demo-2.jpg
ADDED
assets/demo-3.jpg
ADDED
mm_projector.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c67486e883bf7f02b9756850c6f1914e7146936b49805bd3ca8583a71c4d40f
|
3 |
+
size 43009661
|