Update __main__.py
Browse files- __main__.py +71 -51
__main__.py
CHANGED
@@ -1,31 +1,32 @@
|
|
1 |
import argparse
|
2 |
-
import sys
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from PIL import Image
|
8 |
from transformers import (
|
9 |
-
AutoModel,
|
10 |
-
AutoProcessor,
|
11 |
AutoTokenizer,
|
12 |
BitsAndBytesConfig,
|
13 |
-
LlamaForCausalLM,
|
14 |
-
|
|
|
15 |
)
|
16 |
from transformers import TextStreamer
|
17 |
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
def insert_separator(X, sep):
|
24 |
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
25 |
|
26 |
input_ids = []
|
27 |
offset = 0
|
28 |
-
if
|
|
|
|
|
|
|
|
|
29 |
offset = 1
|
30 |
input_ids.append(prompt_chunks[0][0])
|
31 |
|
@@ -41,7 +42,7 @@ def process_tensors(input_ids, image_features, embedding_layer):
|
|
41 |
|
42 |
# Split the input_ids at the index found, excluding -200
|
43 |
input_ids_1 = input_ids[:, :split_index]
|
44 |
-
input_ids_2 = input_ids[:, split_index + 1:]
|
45 |
|
46 |
# Convert input_ids to embeddings
|
47 |
embeddings_1 = embedding_layer(input_ids_1)
|
@@ -57,7 +58,9 @@ def process_tensors(input_ids, image_features, embedding_layer):
|
|
57 |
)
|
58 |
|
59 |
# Create the corrected attention mask
|
60 |
-
attention_mask = torch.ones(
|
|
|
|
|
61 |
return concatenated_embeddings, attention_mask
|
62 |
|
63 |
|
@@ -66,7 +69,9 @@ def initialize_models():
|
|
66 |
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
|
67 |
)
|
68 |
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
70 |
model = LlamaForCausalLM.from_pretrained(
|
71 |
"unsloth/llama-3-8b-Instruct",
|
72 |
torch_dtype=torch.float16,
|
@@ -78,7 +83,9 @@ def initialize_models():
|
|
78 |
param.requires_grad = False
|
79 |
|
80 |
model_name = "google/siglip-so400m-patch14-384"
|
81 |
-
vision_model = SiglipVisionModel.from_pretrained(
|
|
|
|
|
82 |
processor = SiglipImageProcessor.from_pretrained(model_name)
|
83 |
|
84 |
vision_model = vision_model.to("cuda")
|
@@ -94,13 +101,14 @@ class ProjectionModule(nn.Module):
|
|
94 |
self.model = nn.Sequential(
|
95 |
nn.Linear(mm_hidden_size, hidden_size),
|
96 |
nn.GELU(),
|
97 |
-
nn.Linear(hidden_size, hidden_size)
|
98 |
)
|
99 |
|
100 |
def forward(self, x):
|
101 |
return self.model(x)
|
102 |
|
103 |
-
|
|
|
104 |
projection_module = ProjectionModule(mm_hidden_size, hidden_size)
|
105 |
checkpoint = torch.load("./mm_projector.bin")
|
106 |
checkpoint = {k.replace("mm_projector.", ""): v for k, v in checkpoint.items()}
|
@@ -110,37 +118,46 @@ def load_projection_module(mm_hidden_size=1152, hidden_size=4096, device='cuda')
|
|
110 |
|
111 |
|
112 |
def answer_question(
|
113 |
-
|
114 |
):
|
115 |
-
image = Image.open(image_path).convert(
|
116 |
|
117 |
tokenizer.bos_token_id = None
|
118 |
tokenizer.eos_token = "<|eot_id|>"
|
119 |
|
120 |
try:
|
121 |
-
inp = input(
|
122 |
except EOFError:
|
123 |
inp = ""
|
124 |
if not inp:
|
125 |
-
|
126 |
|
127 |
-
question =
|
128 |
|
129 |
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
130 |
|
131 |
-
input_ids =
|
132 |
-
|
|
|
|
|
|
|
133 |
|
134 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
135 |
|
136 |
with torch.inference_mode():
|
137 |
-
image_inputs = processor(
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
image_features = image_forward_outs.hidden_states[-2]
|
146 |
|
@@ -149,42 +166,45 @@ def answer_question(
|
|
149 |
projected_embeddings = projection_module(image_features2).to("cuda")
|
150 |
|
151 |
embedding_layer = model.get_input_embeddings()
|
152 |
-
#text_embeddings = embedding_layer(input_ids)
|
153 |
|
154 |
-
new_embeds, attn_mask = process_tensors(
|
|
|
|
|
155 |
device = model.device
|
156 |
attn_mask = attn_mask.to(device)
|
157 |
new_embeds = new_embeds.to(device)
|
158 |
|
159 |
model_kwargs = {
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
}
|
166 |
|
167 |
while True:
|
168 |
-
print('assistant: ')
|
169 |
-
|
170 |
generated_ids = model.generate(
|
171 |
-
inputs_embeds=new_embeds,
|
172 |
-
attention_mask=attn_mask,
|
173 |
-
**model_kwargs
|
174 |
-
|
175 |
)[0]
|
176 |
|
177 |
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=False)
|
178 |
try:
|
179 |
-
inp = input(
|
180 |
except EOFError:
|
181 |
inp = ""
|
182 |
if not inp:
|
183 |
-
print("
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
new_embeddings = embedding_layer(new_input_ids)
|
189 |
|
190 |
new_embeds = torch.cat([new_embeds, new_embeddings], dim=1)
|
@@ -206,4 +226,4 @@ if __name__ == "__main__":
|
|
206 |
vision_model,
|
207 |
processor,
|
208 |
projection_module,
|
209 |
-
)
|
|
|
1 |
import argparse
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from PIL import Image
|
5 |
from transformers import (
|
|
|
|
|
6 |
AutoTokenizer,
|
7 |
BitsAndBytesConfig,
|
8 |
+
LlamaForCausalLM,
|
9 |
+
SiglipImageProcessor,
|
10 |
+
SiglipVisionModel,
|
11 |
)
|
12 |
from transformers import TextStreamer
|
13 |
|
14 |
|
15 |
+
def tokenizer_image_token(
|
16 |
+
prompt, tokenizer, image_token_index=-200, return_tensors=None
|
17 |
+
):
|
18 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
|
19 |
|
20 |
def insert_separator(X, sep):
|
21 |
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
|
22 |
|
23 |
input_ids = []
|
24 |
offset = 0
|
25 |
+
if (
|
26 |
+
len(prompt_chunks) > 0
|
27 |
+
and len(prompt_chunks[0]) > 0
|
28 |
+
and prompt_chunks[0][0] == tokenizer.bos_token_id
|
29 |
+
):
|
30 |
offset = 1
|
31 |
input_ids.append(prompt_chunks[0][0])
|
32 |
|
|
|
42 |
|
43 |
# Split the input_ids at the index found, excluding -200
|
44 |
input_ids_1 = input_ids[:, :split_index]
|
45 |
+
input_ids_2 = input_ids[:, split_index + 1 :]
|
46 |
|
47 |
# Convert input_ids to embeddings
|
48 |
embeddings_1 = embedding_layer(input_ids_1)
|
|
|
58 |
)
|
59 |
|
60 |
# Create the corrected attention mask
|
61 |
+
attention_mask = torch.ones(
|
62 |
+
concatenated_embeddings.shape[:2], dtype=torch.long, device=device
|
63 |
+
)
|
64 |
return concatenated_embeddings, attention_mask
|
65 |
|
66 |
|
|
|
69 |
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
|
70 |
)
|
71 |
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
73 |
+
"unsloth/llama-3-8b-Instruct", use_fast=True
|
74 |
+
)
|
75 |
model = LlamaForCausalLM.from_pretrained(
|
76 |
"unsloth/llama-3-8b-Instruct",
|
77 |
torch_dtype=torch.float16,
|
|
|
83 |
param.requires_grad = False
|
84 |
|
85 |
model_name = "google/siglip-so400m-patch14-384"
|
86 |
+
vision_model = SiglipVisionModel.from_pretrained(
|
87 |
+
model_name, torch_dtype=torch.float16
|
88 |
+
)
|
89 |
processor = SiglipImageProcessor.from_pretrained(model_name)
|
90 |
|
91 |
vision_model = vision_model.to("cuda")
|
|
|
101 |
self.model = nn.Sequential(
|
102 |
nn.Linear(mm_hidden_size, hidden_size),
|
103 |
nn.GELU(),
|
104 |
+
nn.Linear(hidden_size, hidden_size),
|
105 |
)
|
106 |
|
107 |
def forward(self, x):
|
108 |
return self.model(x)
|
109 |
|
110 |
+
|
111 |
+
def load_projection_module(mm_hidden_size=1152, hidden_size=4096, device="cuda"):
|
112 |
projection_module = ProjectionModule(mm_hidden_size, hidden_size)
|
113 |
checkpoint = torch.load("./mm_projector.bin")
|
114 |
checkpoint = {k.replace("mm_projector.", ""): v for k, v in checkpoint.items()}
|
|
|
118 |
|
119 |
|
120 |
def answer_question(
|
121 |
+
image_path, tokenizer, model, vision_model, processor, projection_module
|
122 |
):
|
123 |
+
image = Image.open(image_path).convert("RGB")
|
124 |
|
125 |
tokenizer.bos_token_id = None
|
126 |
tokenizer.eos_token = "<|eot_id|>"
|
127 |
|
128 |
try:
|
129 |
+
inp = input("user: ")
|
130 |
except EOFError:
|
131 |
inp = ""
|
132 |
if not inp:
|
133 |
+
print("exit...")
|
134 |
|
135 |
+
question = "<image>" + inp
|
136 |
|
137 |
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
138 |
|
139 |
+
input_ids = (
|
140 |
+
tokenizer_image_token(prompt, tokenizer, -200, return_tensors="pt")
|
141 |
+
.unsqueeze(0)
|
142 |
+
.to(model.device)
|
143 |
+
)
|
144 |
|
145 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
146 |
|
147 |
with torch.inference_mode():
|
148 |
+
image_inputs = processor(
|
149 |
+
images=[image],
|
150 |
+
return_tensors="pt",
|
151 |
+
do_resize=True,
|
152 |
+
size={"height": 384, "width": 384},
|
153 |
+
).to("cuda")
|
154 |
+
|
155 |
+
image_inputs = image_inputs["pixel_values"].squeeze(0)
|
156 |
+
|
157 |
+
image_forward_outs = vision_model(
|
158 |
+
image_inputs.to(device="cuda", dtype=torch.float16).unsqueeze(0),
|
159 |
+
output_hidden_states=True,
|
160 |
+
)
|
161 |
|
162 |
image_features = image_forward_outs.hidden_states[-2]
|
163 |
|
|
|
166 |
projected_embeddings = projection_module(image_features2).to("cuda")
|
167 |
|
168 |
embedding_layer = model.get_input_embeddings()
|
169 |
+
# text_embeddings = embedding_layer(input_ids)
|
170 |
|
171 |
+
new_embeds, attn_mask = process_tensors(
|
172 |
+
input_ids, projected_embeddings, embedding_layer
|
173 |
+
)
|
174 |
device = model.device
|
175 |
attn_mask = attn_mask.to(device)
|
176 |
new_embeds = new_embeds.to(device)
|
177 |
|
178 |
model_kwargs = {
|
179 |
+
"do_sample": True,
|
180 |
+
"temperature": 0.2,
|
181 |
+
"max_new_tokens": 2000,
|
182 |
+
"use_cache": True,
|
183 |
+
"streamer": streamer,
|
184 |
}
|
185 |
|
186 |
while True:
|
|
|
|
|
187 |
generated_ids = model.generate(
|
188 |
+
inputs_embeds=new_embeds, attention_mask=attn_mask, **model_kwargs
|
|
|
|
|
|
|
189 |
)[0]
|
190 |
|
191 |
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=False)
|
192 |
try:
|
193 |
+
inp = input("user: ")
|
194 |
except EOFError:
|
195 |
inp = ""
|
196 |
if not inp:
|
197 |
+
print("exit...")
|
198 |
+
|
199 |
+
new_text = (
|
200 |
+
generated_text
|
201 |
+
+ "<|start_header_id|>user<|end_header_id|>\n\n"
|
202 |
+
+ inp
|
203 |
+
+ "<|start_header_id|>assistant<|end_header_id|>\n\n"
|
204 |
+
)
|
205 |
+
new_input_ids = tokenizer(new_text, return_tensors="pt").input_ids.to(
|
206 |
+
device
|
207 |
+
)
|
208 |
new_embeddings = embedding_layer(new_input_ids)
|
209 |
|
210 |
new_embeds = torch.cat([new_embeds, new_embeddings], dim=1)
|
|
|
226 |
vision_model,
|
227 |
processor,
|
228 |
projection_module,
|
229 |
+
)
|