Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -32,13 +32,14 @@ More details on model performance across various devices, can be found
|
|
32 |
- Input resolution: 2048x1024
|
33 |
- Number of parameters: 13.9M
|
34 |
- Model size: 13.5 MB
|
|
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
42 |
|
43 |
|
44 |
|
@@ -97,16 +98,6 @@ device. This script does the following:
|
|
97 |
python -m qai_hub_models.models.ffnet_40s_quantized.export
|
98 |
```
|
99 |
|
100 |
-
```
|
101 |
-
Profile Job summary of FFNet-40S-Quantized
|
102 |
-
--------------------------------------------------
|
103 |
-
Device: RB5 (Proxy) (12)
|
104 |
-
Estimated Inference Time: 189.48 ms
|
105 |
-
Estimated Peak Memory Range: 0.77-2.75 MB
|
106 |
-
Compute Units: NPU (97) | Total (97)
|
107 |
-
|
108 |
-
|
109 |
-
```
|
110 |
|
111 |
|
112 |
|
|
|
32 |
- Input resolution: 2048x1024
|
33 |
- Number of parameters: 13.9M
|
34 |
- Model size: 13.5 MB
|
35 |
+
- Number of output classes: 19
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
41 |
| ---|---|---|---|---|---|---|---|
|
42 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 4.09 ms | 1 - 9 MB | INT8 | NPU | [FFNet-40S-Quantized.tflite](https://huggingface.co/qualcomm/FFNet-40S-Quantized/blob/main/FFNet-40S-Quantized.tflite)
|
43 |
|
44 |
|
45 |
|
|
|
98 |
python -m qai_hub_models.models.ffnet_40s_quantized.export
|
99 |
```
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
|