qaihm-bot commited on
Commit
bb780dd
1 Parent(s): 0873a87

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: llama3
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - llm
7
+ - generative_ai
8
+ - quantized
9
+ - android
10
+
11
+ ---
12
+
13
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/llama_v3_2_3b_chat_quantized/web-assets/model_demo.png)
14
+
15
+ # Llama-v3.2-3B-Chat: Optimized for Mobile Deployment
16
+ ## State-of-the-art large language model useful on a variety of language understanding and generation tasks
17
+
18
+ Llama 3 is a family of LLMs. The "Chat" at the end indicates that the model is optimized for chatbot-like dialogue. The model is quantized to w4a16 (4-bit weights and 16-bit activations) and part of the model is quantized to w8a16 (8-bit weights and 16-bit activations) making it suitable for on-device deployment. For Prompt and output length specified below, the time to first token is Llama-PromptProcessor-Quantized's latency and average time per addition token is Llama-TokenGenerator-Quantized's latency.
19
+
20
+ This is based on the implementation of Llama-v3.2-3B-Chat found
21
+ [here]({source_repo}). More details on model performance
22
+ accross various devices, can be found [here](https://aihub.qualcomm.com/models/llama_v3_2_3b_chat_quantized).
23
+
24
+ ### Model Details
25
+
26
+ - **Model Type:** Text generation
27
+ - **Model Stats:**
28
+ - Input sequence length for Prompt Processor: 128
29
+ - Context length: 4096
30
+ - Number of parameters: 3B
31
+ - Model size: 2.4G
32
+ - Precision: w4a16 + w8a16 (few layers)
33
+ - Num of key-value heads: 8
34
+ - Model-1 (Prompt Processor): Llama-PromptProcessor-Quantized
35
+ - Prompt processor input: 128 tokens + position embeddings + attention mask + KV cache inputs
36
+ - Prompt processor output: 128 output tokens + KV cache outputs
37
+ - Model-2 (Token Generator): Llama-TokenGenerator-Quantized
38
+ - Token generator input: 1 input token + position embeddings + attention mask + KV cache inputs
39
+ - Token generator output: 1 output token + KV cache outputs
40
+ - Use: Initiate conversation with prompt-processor and then token generator for subsequent iterations.
41
+ - Minimum QNN SDK version required: 2.27.7
42
+ - Supported languages: English.
43
+ - TTFT: Time To First Token is the time it takes to generate the first response token. This is expressed as a range because it varies based on the length of the prompt. The lower bound is for a short prompt (up to 128 tokens, i.e., one iteration of the prompt processor) and the upper bound is for a prompt using the full context length (4096 tokens).
44
+ - Response Rate: Rate of response generation after the first response token.
45
+
46
+ | Model | Device | Chipset | Target Runtime | Response Rate (tokens per second) | Time To First Token (range, seconds)
47
+ |---|---|---|---|---|---|
48
+ | Llama-v3.2-3B-Chat | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 23.4718 | 0.088195 - 2.82225 | -- | -- |
49
+
50
+ ## Deploying Llama 3.2 on-device
51
+
52
+ Please follow the [LLM on-device deployment](https://github.com/quic/ai-hub-apps/tree/main/tutorials/llm_on_genie) tutorial.
53
+
54
+
55
+
56
+ ## License
57
+ * The license for the original implementation of Llama-v3.2-3B-Chat can be found [here](https://github.com/facebookresearch/llama/blob/main/LICENSE).
58
+ * The license for the compiled assets for on-device deployment can be found [here](https://github.com/facebookresearch/llama/blob/main/LICENSE)
59
+
60
+
61
+
62
+ ## References
63
+ * [LLaMA: Open and Efficient Foundation Language Models](https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_2/)
64
+ * [Source Model Implementation](https://github.com/meta-llama/llama3/tree/main)
65
+
66
+
67
+
68
+ ## Community
69
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
70
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
71
+
72
+ ## Usage and Limitations
73
+
74
+ Model may not be used for or in connection with any of the following applications:
75
+
76
+ - Accessing essential private and public services and benefits;
77
+ - Administration of justice and democratic processes;
78
+ - Assessing or recognizing the emotional state of a person;
79
+ - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
80
+ - Education and vocational training;
81
+ - Employment and workers management;
82
+ - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
83
+ - General purpose social scoring;
84
+ - Law enforcement;
85
+ - Management and operation of critical infrastructure;
86
+ - Migration, asylum and border control management;
87
+ - Predictive policing;
88
+ - Real-time remote biometric identification in public spaces;
89
+ - Recommender systems of social media platforms;
90
+ - Scraping of facial images (from the internet or otherwise); and/or
91
+ - Subliminal manipulation